
IBM Parallel Environment for AIX IBM

Dynamic Probe Class Library
Programming Guide
Version 3 Release 1

 SA22-7420-00

IBM Parallel Environment for AIX IBM

Dynamic Probe Class Library
Programming Guide
Version 3 Release 1

 SA22-7420-00

 Note

Before using this information and the product it supports, read the information in “Notices” on page 209.

First Edition (April 2000)

This edition applies to Version 3, Release 1 of IBM Parallel Environment for AIX (product number 5765-D93) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About this book . xi
Who should read this book . xi
How This Book is Organized . xi

Overview of Contents . xii
Conventions and terminology used in this book xiii
Accessing AIX man pages for DPCL classes and functions xiv
Accessing DPCL sample applications . xv
How to send your comments . xvi
National language support (NLS) . xvi
What's new in PE 3.1? . xvii

New version of PE . xvii
New application program interfaces (APIs) . xvii
Support for FORTRAN 95 . xviii
Support for Distributed Computing Environment (DCE) security xviii
MPI enhancements . xviii
Support for 4096 tasks . xviii
Removal of VT support . xix
Commands no longer supported . xix
Change to softcopy documentation filesets . xix

DPCL Concepts and Overview . 1

Chapter 1. What is DPCL? . 3
What is dynamic instrumentation? . 5

What are the advantages of dynamic instrumentation? 6
What is the DPCL system? . 6

What is a DPCL target application? . 9
What is a DPCL analysis tool? . 9
What are the DPCL daemons? . 13
What is a probe? . 15

Why is it advantageous to build analysis tools on the DPCL system? 21

Chapter 2. What are the DPCL classes? . 25
What are the Process, Application, and PoeAppl classes? 25

What is the Process class? . 26
What is the Application class? . 32
What is the PoeAppl class? . 39

What are the ProbeExp, ProbeHandle, and ProbeModule classes? 39
What is the ProbeExp class? . 40
What is the ProbeHandle class? . 46
What is the ProbeModule class? . 47

What are the SourceObj and InstPoint classes? 48
What is the SourceObj class? . 48
What is the InstPoint class? . 52

What is the ProbeType class? . 55
What is the Phase class? . 57
What is the AisStatus class? . 58

Chapter 3. A DPCL hello world program . 61

 Copyright IBM Corp. 2000 iii

The hello world target application . 61
The hello world analysis tool . 61

Step 1: Initialize tool to use the DPCL system 64
Step 2: Connect to the target application . 65
Step 3: Create hello world probe . 65
Step 4: Install and execute probe in the target application 66
Step 5: Entering the DPCL main event loop 69

Compiling, linking, and running the DPCL hello world program 70

Standard DPCL Programming Tasks . 71

Chapter 4. Performing status error checking 73

Chapter 5. Initializing the analysis tool to use the DPCL system 79
Step 1: Include DPCL header file(s) . 79
Step 2: Initialize the DPCL system . 80
Example: Initializing the analysis tool to use the DPCL system 81

Chapter 6. Connecting to or starting the target application processes . . 83
Connecting to the target application . 83

Connecting to a serial application . 84
Connecting to a parallel application . 86

Starting the target application . 94
Starting a serial application . 94
Starting a parallel application . 97

Chapter 7. Controlling execution of target application processes 105
Attaching to the target application process(es) 106
Resuming execution of the target application process(es) 107
Suspending execution of the target application process(es) 108
Terminating target application processes . 109
Detaching from target application processes . 110
Example: Controlling execution of target application processes 111

Chapter 8. Creating probes . 115
Creating probe expressions . 115

Step 1: Determine basic logic for the probe expression 116
Step 2: Build the probe expression . 117
Example: Creating probe expressions . 135

Creating and calling probe module functions . 136
Step 1: Create probe module function . 137
Step 2: Compile the probe module . 137
Step 3: Instantiate a ProbeModule class object to represent the probe

module . 138
Step 4: Load probe module into Process class object(s) 138
Step 5: Create probe expression to reference or call the probe module

function . 139
Step 6: Create data callback function to respond to messages from the

probe . 140
Example: Creating and calling a probe module function 140

Chapter 9. Executing probes in target application processes 143
Installing and activating point probes . 143

iv IBM PE for AIX V3R1.0: DPCL Programming Guide

Step 1: Create point probe . 143
Step 2: Navigate application source structure to get instrumentation point . . 144
Step 3: Install probe at instrumentation point 148
Step 4: Activate probe . 149
Example: Installing and activating a point probe 151

Executing phase probes . 153
Step 1: Create probe module(s) . 154
Step 2: Create probe expression(s) to reference the probe module

function(s) . 156
Step 3: Create phase . 157
Step 4: Add phase to the target application process(es) 157
Step 5: Create probe expression(s) to allocate and associate data with the

phase . 158
Step 6: Specify phase exit functions . 159
Step 7: Modify phase period . 159
Example: Executing phase probes . 161

Executing one-shot probes . 163
Step 1: Create one-shot probe . 163
Step 2: Execute the one-shot probe . 163
Example: Executing a one-shot probe . 165

Chapter 10. Creating data callback routines 167

Chapter 11. Entering and exiting the DPCL main event loop 169
Example: Entering and exiting the DPCL main event loop 170

Chapter 12. Disconnecting from target application processes 171

Chapter 13. Compiling and linking the analysis tool and target
application . 173

Step 1: Prelink target application with DPCL library 173
Step 2: Compile the analysis tool with DPCL library and include files 173

Additional DPCL Programming Tasks . 175

Chapter 14. Handling signals and file descriptors through the DPCL
system . 177

Handling signals through the DPCL system . 177
Handling file descriptors through the DPCL system 178

Chapter 15. Overriding default system callbacks 181

Chapter 16. Generating diagnostic logs . 183

Appendixes . 187

Appendix A. A DPCL test coverage tool . 189

Notices . 209
Trademarks . 210

Glossary . 213

 Contents v

Bibliography . 223
Information Formats . 223
Finding Documentation on the World Wide Web 223
Accessing PE Documentation Online . 223
RS/6000 SP Publications . 224

SP Hardware and Planning Publications . 224
SP Software Publications . 224

AIX and Related Product Publications . 225
DCE Publications . 225
Red Books . 225
Non-IBM Publications . 225

Index . 227

vi IBM PE for AIX V3R1.0: DPCL Programming Guide

 Figures

1. Instrumenting a serial target application . 7
2. Instrumenting a parallel target application 8
3. Blocking function calls (pseudo-synchronous service requests) 11
4. Nonblocking function calls (asynchronous service requests) 12
5. DPCL communication daemon . 15
6. Abstract syntax tree . 16
7. Process connect state diagram . 27
8. Process objects grouped under an Application object 33
9. Process objects grouped under multiple Application objects 34

10. Building an abstract syntax tree . 40
11. Building a more complex abstract syntax tree 41
12. Probe expression abstract syntax trees representing operations 43
13. Probe expression abstract syntax trees representing function calls 43
14. Probe expression abstract syntax tree representing an instruction

sequence . 44
15. Probe expression abstract syntax trees representing conditional

statements . 44
16. Navigating and expanding a source hierarchy 50
17. Exclusive and inclusive instrumentation point counts for source objects . 53
18. Instrumentation point types and locations 54
19. Probe type trees . 56

 Copyright IBM Corp. 2000 vii

viii IBM PE for AIX V3R1.0: DPCL Programming Guide

 Tables

1. Accessing AIX man pages for DPCL classes and functions xv
2. Accessing DPCL sample applications . xvi
3. Process class function summary . 30
4. Application class function summary . 36
5. PoeAppl class function summary . 39
6. ProbeExp class function summary . 45
7. ProbeHandle class function summary . 47
8. ProbeModule class function summary . 48
9. SourceObj class function summary . 51

10. InstPoint class function summary . 54
11. ProbeType class function summary . 57
12. Phase class function summary . 58
13. AisStatus class function summary . 59
14. DPCL header files . 79
15. Instantiating a Process object . 85
16. Connecting to a target application process 85
17. Instantiating Process objects for multiple target application processes . . 88
18. Instantiating an Application object (for connecting to multiple processes) 88
19. Connecting to multiple target application processes 89
20. Initializing a PoeAppl object to contain Process class objects 92
21. Connecting to multiple POE target application processes 93
22. Creating a target application process . 96
23. Starting a target application process . 97
24. Creating multiple target application processes 99
25. Instantiating an Application object (for starting multiple target application

processes) . 100
26. Starting multiple target application processes 101
27. Creating POE target application processes 103
28. Starting POE target application processes 104
29. Attaching to one or more target application processes 106
30. Resuming execution of one or more suspended target application

processes . 108
31. Suspending execution of one or more target application processes . . 109
32. Terminating one or more target application processes 110
33. Detaching from one or more target application processes 111
34. Creating probe expressions to represent temporary data 118
35. Allocating memory in one or more target application processes 121
36. Deallocating memory in one or more target application processes . . . 122
37. Creating probe expressions to represent arithmetic operations 124
38. Creating probe expressions to represent bitwise operations 124
39. Creating probe expressions to represent logical operations 125
40. Creating probe expressions to represent relational operations 125
41. Creating probe expressions to represent assignment operations 125
42. Creating probe expressions to represent pointer operations 127
43. Instantiating a ProbeModule object . 138
44. Loading a probe module into one or more target application processes 139
45. Expanding a module-level source object 146
46. Installing a point probe in one or more target application processes . . 149
47. Activating a point probe in one or more target application processes . 150
48. Executing a one-shot probe in one or more target application processes 164

 Copyright IBM Corp. 2000 ix

49. Disconnecting from one or more target application processes 171

x IBM PE for AIX V3R1.0: DPCL Programming Guide

About this book

This book describes the Dynamic Probe Class Library (DPCL). It shows how a C++
program can call DPCL functions to dynamically insert and remove instrumentation
code patches, or "probes", into a running application.

This book is designed as a companion volume to the IBM Parallel Environment for
AIX: DPCL Class Reference, SA22-7421-00. In contrast to the IBM Parallel
Environment for AIX: DPCL Class Reference (which provides detailed,
alphabetically-ordered, information about each DPCL function), this book describes
DPCL at a higher level. While not as detailed as the reference, this book provides
an overview of the tasks a program can perform using DPCL, and describes the
DPCL classes and functions related to each task.

By focusing on the tasks that a program can perform, this book provides the
context necessary to understand how the various classes and functions of DPCL
work together to accomplish specific goals. Once you understand the tasks that
your program can perform, and know which classes need to be instantiated and
which functions need to be called in order to perform each task, you can refer to
the IBM Parallel Environment for AIX: DPCL Class Reference for any additional,
more specific, information you require.

Who should read this book
This book is intended for C++ application developers working in an AIX
environment. You should, therefore, understand the C++ programming language
and the AIX operating system before reading this book. Furthermore, if you plan to
use the DPCL to instrument parallel programs, you should understand
parallel-programming concepts, and if you plan to run these programs in the
Parallel Environment, you should also understand the Parallel Environment and the
Parallel Operating Environment. Where necessary, this book provides some
background information relating to these issues. More commonly, this book refers
you to the appropriate documentation.

How This Book is Organized
This book is organized into three main parts – the first part contains a general
overview of basic terms and concepts, the second part provides instructions for
performing standard DPCL programming tasks, and the third part provides
instructions for performing additional, more-advanced and/or less-commonly
performed, DPCL programming tasks. In addition to these three main parts, this
book has a forth part consisting of appendixes — a sample DPCL application, a
glossary of terms, and a detailed index.

Throughout this book, C++ code examples illustrate various features of DPCL.
Please note that these examples do not perform rigorous error checking and are
provided for illustration only.

 Copyright IBM Corp. 2000 xi

Overview of Contents
This book contains the following information:

� “DPCL Concepts and Overview” on page 1 contains three chapters designed to
provide you with a general introduction and overview of the Dynamic Probe
Class Library. This section contains the following chapters:

– Chapter 1, “What is DPCL?” on page 3 describes the basic, yet central,
concepts you need to understand in order to use DPCL. It provides a
high-level description of how a program can use the classes and member
functions of DPCL to instrument another application. This chapter also
introduces and defines the DPCL terminology that is used throughout this
book, and, in doing so, describes the various parts of the DPCL software
system and illustrates how these parts work together to instrument a
program.

– Chapter 2, “What are the DPCL classes?” on page 25 builds on the
overview of the DPCL system contained in Chapter 1, “What is DPCL?” on
page 3 by describing the DPCL classes that represent the elements of the
DPCL system. In doing so, it describes the purpose, supporting data types,
and functions of each class.

– Chapter 3, “A DPCL hello world program” on page 61 uses the familiar
"Hello World" example to illustrate how to instrument an application using
DPCL. Unlike traditional "Hello World" programs, our example program
does not itself print out the string "Hello World". Instead, our program
serves as a DPCL "target application". We show how another program
(what we call a DPCL "analysis tool") can insert an instrumentation code
patch (called a "probe") into the target application. The probe, from within
the target application, will send the "Hello World" string back to the analysis
tool.

� “Standard DPCL Programming Tasks” on page 71 contains chapters describing
the common tasks that all programs built on DPCL will need to perform. This
section contains the following chapters:

– Chapter 4, “Performing status error checking” on page 73 provides general
information on DPCL error checking.

– Chapter 5, “Initializing the analysis tool to use the DPCL system” on
page 79 describes basic initialization tasks your program must perform. To
use the DPCL system, your program must include DPCL header files,
initialize the DPCL system, and enter the DPCL main event loop.

– Chapter 6, “Connecting to or starting the target application processes” on
page 83 describes how a program must connect to a target application if it
is to later dynamically insert probes into that application. If the target
application process(es) are already running, this chapter describes how the
analysis tool can connect to the process(es). This chapter also describes
how an analysis tool can use DPCL to create one or more target
application processes. When an analysis tool creates a process in this way,
the DPCL system also establishes the connection necessary for inserting
probes into the process.

– Chapter 7, “Controlling execution of target application processes” on
page 105 describes how an analysis tool can attach itself to a target
application process in order to control execution of the process. It describes

xii IBM PE for AIX V3R1.0: DPCL Programming Guide

how an application can, once in this attached state, use DPCL function
calls to suspend, resume, or kill one or more target application processes.

– Chapter 8, “Creating probes” on page 115 describes the steps your
program must follow to create the actual instrumentation code that will be
executed within the target application. This chapter describes how to create
simple instructions or sequences of instructions, called probe expressions,
to serve as the instrumentation code. It also describes how a probe
expression can optionally call a function written in C when more
complicated instrumentation is needed.

– Chapter 9, “Executing probes in target application processes” on page 143
describes the steps your program must follow to execute probes within one
or more target application processes.

– Chapter 10, “Creating data callback routines” on page 167 describes how
an analysis tool can create a "data callback routine" to respond to data sent
back to the analysis tool from probes executing within target application
processes.

– Chapter 11, “Entering and exiting the DPCL main event loop” on page 169
describes how an analysis tool can enter an event loop to interface
asynchronously with the DPCL system.

– Chapter 12, “Disconnecting from target application processes” on
page 171 describes how an analysis tool can disconnect processes it has
finished examining.

– Chapter 13, “Compiling and linking the analysis tool and target application”
on page 173 describes how to prelink your target application with the
DPCL libraries and compile your analysis tool with the DPCL library and
include files.

� “Additional DPCL Programming Tasks” on page 175 contains chapters
describing the additional tasks that some programs built on the DPCL will need
or want to perform. This section contains the following chapters:

– Chapter 14, “Handling signals and file descriptors through the DPCL
system” on page 177 describes how an application can monitor AIX signals
and file descriptors through the DPCL system.

– Chapter 15, “Overriding default system callbacks” on page 181 describes
how an application can create callback routines to handle unexpected
system events such as a DPCL daemon exiting or a target application
process terminating. These callbacks then replace the default system
callbacks which merely print out error messages.

– Chapter 16, “Generating diagnostic logs” on page 183 describes how a
program can, for troubleshooting and debugging purposes, create a log file
that records the activities of the DPCL system.

Conventions and terminology used in this book
This book uses the following typographic conventions:

 About this book xiii

Convention Usage

bold Bold words or characters represent system elements that you must use literally,
such as: command names, flag names, and PE component names (pedb, for
example).

constant width Subroutine names, examples, and information that the system displays appear in
constant-width typeface.

italic Italicized words or characters represent variable values that you must supply, file
names, and path names.

Italics are also used for book titles, for the first use of a glossary term, and for
general emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

In addition to the highlighting conventions, this manual often uses the C++ scope
resolution operator (::) when referring to DPCL functions. It does this for the
following two reasons:

� First of all, this manual often uses the scope resolution operator for the same
reason a program might — to remove ambiguity when multiple classes contain
identically-named member functions. For example, since both the Application
class and the Process class have a member function connect, this manual
refers to these functions as Application::connect and Process::connect to
avoid ambiguity.

� Secondly, this manual also uses the scope resolution operator in a more
general way to simply show the class that contains a particular member
function; it does this even when the function name is unique within the entire
class library. The ambiguity being addressed in these cases is within this
manual's text only, and not within DPCL's programming interface. For example,
even though the function name add_process is unique within the entire class
library, this manual may, for clarity, still refer to it as Application::add_process.

Accessing AIX man pages for DPCL classes and functions
The book you are reading now provides a general overview of the DPCL classes
and functions, but does not provide detailed reference information. For detailed
reference information on any of the DPCL classes or functions described here, refer
to this book's companion volume — the IBM Parallel Environment for AIX: DPCL
Class Reference, SA22-7421-00. For your convenience, all of the reference
information is also provided as AIX man pages and can be accessed by the AIX
man command as described in the following table.

xiv IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 1. Accessing AIX man pages for DPCL classes and functions

To access the AIX man
page for:

ENTER:

a general overview of the
DPCL classes:

man dpcl

a DPCL class: man class-name

Where class-name is the name of the DPCL class. For example, to access the man page for
the Process class:

ENTER man process

a DPCL function: man function-name

Where function-name is the name of the DPCL function. Since different DPCL classes often
have functions of the same name, note that the man page may contain multiple function
descriptions. For example, for information on the Process::connect function, you would:

ENTER man connect

� A man page summarizing both the Process::connect and the
Application::connect functions is displayed.

Also note that many of the DPCL classes have overloaded operator functions. These are
described in the class' man page.

Accessing DPCL sample applications
For many users, the easiest way to learn DPCL will be by running and examining
actual working DPCL applications (called "DPCL analysis tools") to see how they
use DPCL functions to insert probes into another running application (called a
"DPCL target application"). For this reason, a set of sample applications was copied
to the directory /usr/lpp/ppe.dpcl/samples/ when you installed DPCL. The
following table summarizes the sample applications located in subdirectories under
/usr/lpp/ppe.dpcl/samples; the order in which the sample directories are listed in
this table indicates the recommended order in which you should try the examples.
Each of the subdirectories in the following table contains a README file that
provides additional information about the program. These subdirectories also
contain makefiles for the sample target applications and analysis tools. Refer to
Chapter 13, “Compiling and linking the analysis tool and target application” on
page 173 for more information on running DPCL programs.

 About this book xv

Table 2. Accessing DPCL sample applications

This subdirectory of
/usr/lpp/ppe.dpcl/samples/:

Contains:

hello a "hello world" program in which a target application is instrumented to send a "hello world"
string back to the analysis tool. This sample application is described in detail in Chapter 3, “A
DPCL hello world program” on page 61.

listmod an analysis tool that displays all of the instrumentation points (locations where probes can be
inserted) in the target application.

mpitrace an analysis tool that finds all MPI function call sites within the target application, and inserts
probes before and after the calls. These installed probes will generate messages indicating
when execution of the target application has reached the points before and after the calls.

testcov an analysis tool that periodically prints the number of times each function within the target
application has been called. This sample application is described in detail in Appendix A, “A
DPCL test coverage tool” on page 189.

diag an analysis tool that periodically prints the values of global variables within the target
application that have changed.

dynamic an analysis tool that prints the value of a specified global variable when execution reaches a
particular location within the target application's code.

profiler an analysis tool that provides, for a given function within the target application, both the
individual and accumulated values for elapsed usage and time.

probe_module an analysis tool similar to the one in the subdirectory dynamic, except that it loads a probe
module (a compiled object file containing one or more functions written in C) into the target
application.

chaotic an analysis tool that demonstrates how to install a probe at a function entry point within the
target application to keep track of how many times the function is called.

stencil function call count, probe module, and tracing examples. Although similar to some other
sample applications, these examples accomplish the same tasks in different ways.

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other PE
documentation:

� Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of PE, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

� Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

National language support (NLS)
For national language support (NLS), all PE components and tools display
messages located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE program product, but your site may be
using its own translated message catalogs. The AIX environment variable
NLSPATH is used by the various PE components to find the appropriate message
catalog. NLSPATH specifies a list of directories to search for message catalogs.
The directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of

xvi IBM PE for AIX V3R1.0: DPCL Programming Guide

the environment variables LC_MESSAGES and LANG. If you get an error saying
that a message catalog is not found, and want the default message catalog:

ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English and are located in these directories:

 /usr/lib/nls/msg/C
 /usr/lib/nls/msg/En_US
 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For
additional information on NLS and message catalogs, see IBM Parallel Environment
for AIX: Messages, GA22-7419 and IBM AIX Version 4 General Programming
Concepts: Writing and Debugging Programs, SC23-2533.

What's new in PE 3.1?

New version of PE
This release represents a new version of IBM Parallel Environment for AIX: PE
Version 3, Release 1. In addition to functional enhancements, PE 3.1 includes
these changes:

� PE now supports AIX 4.3.3.

� PE Version 1 is no longer supported.

� The visualization tool (VT) has been removed.

New application program interfaces (APIs)

Dynamic probe class library (DPCL) parallel tools development
API
This release of PE includes a new set of interfaces called the dynamic probe class
library (DPCL). With DPCL, tool builders can define instrumentation that can be
inserted and removed from an application as it is running. Because the task of
generating instrumentation is simplified, designers can develop new tools quickly
and easily using DPCL.

Parallel task identification API
PE 3.1 includes a new Parallel Operating Environment (POE) API that allows an
application to retrieve the process IDs of all POE master processes running on the
same node. This information can be used for accounting, or to get more detailed
information about the tasks spawned by these POE processes.

 About this book xvii

Support for FORTRAN 95
PE 3.1 supports FORTRAN 95 by providing the following new compiler scripts:

 � mpxlf95

 � mpxlf95_chkpt

 � mpxlf95_r

Support for Distributed Computing Environment (DCE) security
This release of PE introduces full support for the Distributed Computing
Environment (DCE) through the SP Security Services of IBM Parallel System
Support Programs for AIX.

Previous releases of PE provided limited support for DCE / Distributed File System
(DFS) security.

The use of DCE security is optional.

 MPI enhancements

Full support for MPI I/O
PE 3.1 provides full support for all of the MPI I/O interfaces. Previous releases of
PE provided only partial support for MPI I/O.

Support for MPI one-sided communication
With this release, PE now provides full support for MPI one-sided communication.
MPI one-sided communication allows one process to specify all communication
parameters for the sending operation as well as the receiving operation.

Support for MPI shared memory message passing
In this release, PE introduces support for shared memory MPI message passing on
symmetric multiprocessor (SMP) nodes, for the Internet Protocol (IP) library and for
the User Space (US) library.

This support includes a new environment variable that lets you select the shared
memory protocol. MPI programs may benefit from using shared memory to send
messages between two or more tasks that are running on the same node.

Your applications do not need to be changed in any way to take advantage of this
support.

Support for 4096 tasks
On a 512-node system, this release of PE supports a maximum of 4096 tasks per
User Space job and a maximum of 2048 tasks per IP job, depending on the system
and the library you are using.

Note: The pedb debugger supports a maximum of 32 tasks.

xviii IBM PE for AIX V3R1.0: DPCL Programming Guide

Removal of VT support
Beginning with this release, PE no longer includes the visualization tool (VT)
function. As a result, these commands are no longer available:

 � poestat

 � vt

Commands no longer supported
Beginning with this release, PE no longer supports these commands:

 � mpmkdir

 � mprcp

 � poeauth

 � poestat

 � vt

Change to softcopy documentation filesets
In past releases, the ppe.pedocs fileset contained all of the PE softcopy
publications. Beginning with release 3.1, ppe.pedocs will be replaced by these
filesets:

� ppe.html (HTML files)

� ppe.man (man pages)

� ppe.pdf (PDF files)

See IBM Parallel Environment for AIX: Installation for more information on migration
and installation.

 About this book xix

xx IBM PE for AIX V3R1.0: DPCL Programming Guide

DPCL Concepts and Overview

This section contains a general introduction to the Dynamic Probe Class Library.
This introduction is contained within three chapters.

� Chapter 1, “What is DPCL?” on page 3 describes, at a very high level, how a
program can use the DPCL to dynamically insert instrumentation code patches,
or "probes" into an executable program. It describes dynamic instrumentation,
and discusses this technology's advantage over more traditional methods of
software instrumentation. It then describes our particular application of dynamic
instrumentation technology — the DPCL system — by describing its various
parts and showing how they work together to instrument an application. This
chapter defines terms used throughout the book, describes the three types of
probes you can create, and discusses the specific advantages of building tools
on the DPCL.

� Chapter 2, “What are the DPCL classes?” on page 25 builds on the overview
of the DPCL system contained in Chapter 1, “What is DPCL?” on page 3 by
describing the DPCL classes that represent the elements of the DPCL system.
In doing so, it describes the purpose, supporting data types, and functions of
each class.

� Chapter 3, “A DPCL hello world program” on page 61 contains this book's
initial code example — a DPCL version of the familiar "Hello World" program (a
simple program that prints out the string "Hello World"). While simple, this
program nevertheless illustrates some key features of the DPCL's programming
interface. Specifically, it illustrates how a program built on the DPCL system
can:

– initialize itself to use the DPCL system

– connect to the target application

– create a simple probe

– execute the probe within the target application process.

By illustrating these programming tasks, this description of our "Hello World"
program leads directly into this manual's next section (“Standard DPCL
Programming Tasks” on page 71), which discusses these same programming
tasks in more detail.

 Copyright IBM Corp. 2000 1

2 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 1. What is DPCL?

DPCL (Dynamic Probe Class Library) is a C++ class library whose application
programming interface (API) enables a program to dynamically insert
instrumentation code patches, or "probes", into an executing program. The program
that uses DPCL calls to insert probes is called the "analysis tool", while the
program that accepts and runs the probes is called the "target application".

The DPCL product is an asynchronous software system designed to serve as a
foundation for a variety of analysis tools that need to dynamically instrument (insert
probes into and remove probes from) target applications. In addition to its API, the
DPCL system consists of daemon processes that attach themselves to the target
application process(es) to perform most of the actual work, and an asynchronous
communication and callback facility that connects the class library to the daemon
processes.

This overview describes the various parts of the DPCL system and how they work
together to enable analysis tools to instrument target application processes. Before
you can understand the individual parts of the DPCL system, however, you need to
have a general understanding of the system as a whole. Here is a very high-level
description of how an analysis tool uses the DPCL system to instrument a serial or
parallel target application. Say you have an executable DPCL program that has
been compiled with the DPCL header files and linked with the DPCL library. When
you start execution of this program, its code does the following to instrument a
target application:

1. The analysis tool initializes itself to use the DPCL system. To do this, the
analysis tool calls a DPCL initialization function. This enables the analysis tool
to respond asynchronously to data sent, via a DPCL daemon, from probes
installed in the target application.

2. The analysis tool connects to, or creates, one or more target application
processes.

� To connect to one or more target application processes that are already
running, the analysis tool calls a function designed for this purpose. When
called, this DPCL function starts a DPCL daemon process on the host
machine(s) running the target application process(es). The daemon
attaches itself to the process(es) and will now perform much of the actual
work requested by the analysis tool through the DPCL function calls.

� To create one or more target application processes running, the analysis
tool calls a function designed for this purpose. When called, this DPCL
function creates the new process(es) on the particular host as indicated. As
with connecting, a DPCL daemon process attaches itself to the process(es)
and will now perform much of the actual work requested by the analysis
tool through DPCL function calls.

3. The analysis tool creates snippets of executable instrumentation code
(the "probes") to be inserted into the target application process(es). To do
this, the analysis tool uses a DPCL class that has overloaded common
operators so that expressions written within the context of the class do not
execute locally but instead create internal data structures (called "probe
expressions") that represent the operation. In addition to these overloaded
operators (which implicitly call functions to create probe expressions

 Copyright IBM Corp. 2000 3

representing operations), there are additional functions that your code can
explicitly call to create probe expressions representing conditional logic, a
sequence of other probe expressions, or a function call.

A probe expression is a specific type of data structure called an "abstract
syntax tree". Abstract syntax trees (a term used mainly in compiler technology)
are data structures that represent instructions removed from a specific syntactic
representation; they are a sort of intermediary stage between source code and
executable instructions. When the analysis tool calls DPCL functions to insert
a probe expression into one or more target application processes, the DPCL
system will manipulate these abstract syntax trees into executable instructions
that will run as part of the target application process(es).

While an analysis tool can create probe expressions that perform some simple
logic, the programmatic capabilities of probe expressions are rather limited. For
this reason, a probe expression may optionally call functions. Specifically, a
probe expression can call:

� a DPCL system-defined function for sending collected data back to the
analysis tool.

� AIX functions (like getrusage, times, and vtimes).

� functions contained in the target application.

� A C function compiled into an object file called a "probe module". Certain
DPCL functions enable you to load such modules into one or more target
application processes. Once a probe module is loaded into a target
application process, the analysis tool can direct the target process to call
any of its functions. Note, however, that probe module functions must be
written in C; other languages (such as C++) are not supported.

4. The analysis tool inserts the probes into the target application for
execution. To do this, the analysis tool calls certain DPCL functions that, like
many DPCL functions, send service request messages to a DPCL daemon.
This DPCL daemon then translates the messages into the desired action.

There are three general ways an analysis tool can execute probes within a
target application process. These three general approaches correspond to the
three types of probes — point probes, phase probes, and one-shot probes. The
analysis tool can:

� place probes at a specific locations in the target application code. Such
probes are called "point probes", and, when activated by the analysis tool,
will run whenever execution reaches their installed location in the code.

� install probes that are executed within the target application process(es)
upon the expiration of a timer regardless of what the target application is
doing. Such probes are called "phase probes". The invocation of phase
probes is governed by data structures called phases. Each phase defines
that phase probe(s) to be invoked and the time interval between successive
invocations of the phase probe(s).

� explicitly execute a probe within the target application process(es)
regardless of what the target application is doing. Such probes are called
"one-shot probes".

5. Enters the DPCL main event loop. This enables the analysis tool to interface
asynchronously with the DPCL system. To do this, the analysis tool calls a
DPCL function that puts execution in a processing loop. This enables the

4 IBM PE for AIX V3R1.0: DPCL Programming Guide

analysis tool to respond asynchronously to, for example, messages from DPCL
daemons.

6. The analysis tool responds to data sent, via a DPCL daemon, from its
installed probes. To do this, the analysis tool must have created a DPCL
callback routine (also called simply a "DPCL callback") designed to respond to
the probe data. The probe can send data in a message to the DPCL daemon.
The daemon then passes this message back to the analysis tool along with
information indicating which callback should be used to respond to this probe's
data. The analysis tool, meanwhile, has been sitting in its main event loop
waiting for just such an event; it responds to the message by calling the
appropriate callback and supplying it with the collected probe data.

That is a very high-level view of how the analysis tool interacts with the DPCL
system in order to instrument a target application. The rest of this overview will
provide a more-detailed description of this process and the DPCL system. First, it
describes dynamic instrumentation in general by answering the following questions:

� What is dynamic instrumentation?

� What are the advantages of dynamic instrumentation?

Next, this overview describes the basic architecture of the DPCL system by
answering the questions:

� What is a DPCL target application?

� What is a DPCL analysis tool? In describing what a DPCL analysis tool is, this
overview also answers the questions:

– What is the DPCL API?

– What are DPCL callbacks?

� What are the DPCL daemons?

� What is a probe? In describing what a probe is, this overview also answers the
questions:

– What is a probe expression?

– What is a probe module?

– What are the three types of probes?

Once these questions have been answered, you will have a clearer idea of the
various parts of the DPCL system, and how they are organized. This overview then
concludes by explaining why it is advantageous to build analysis tools on the DPCL
system.

What is dynamic instrumentation?
Dynamic instrumentation refers to a specific type of software instrumentation.
Software instrumentation refers to code that is inserted into a program to gather
information regarding the program's run. As the instrumented application executes,
the instrumented code then generates the desired information, which could include
performance, trace, test coverage, diagnostic, or other data. Traditionally, software
instrumentation has been inserted:

� manually by a programmer editing a program's source code

� automatically by a compiler designed to generate the instrumentation

 Chapter 1. What is DPCL? 5

� by linking in an instrumented version of a library

� directly into the executable by an application designed for this purpose

Dynamic instrumentation is distinct from these more traditional methods of software
instrumentation because it can be added and removed while the application is
running. The application does not need to be terminated and restarted from the
beginning in order to add and remove instrumentation.

What are the advantages of dynamic instrumentation?
We chose to base the DPCL product on dynamic instrumentation technology,
because dynamic instrumentation offers several key benefits that cannot be
realized by traditional software instrumentation approaches. Specifically, a DPCL
analysis tool's ability to add and remove instrumentation probes while the target
application is running means that the analysis tool can perform run-time analysis. In
other words, it can examine the target application's behavior without waiting for its
execution to complete. This is especially useful for:

� examining programs, such as database servers, that do not normally terminate.
Since analysis tools built on the DPCL system can insert instrumentation
probes long after the target application has begun executing, instrumenting
such programs is not a problem.

� examining long-running numerical programs, especially when the program is
repetitive and the general execution structure can be obtained from a few early
iterations.

� visualizing complex or long-running programs with a minimum of secondary
storage consumption. Because it can visualize a target application's behavior
as it actually runs, an analysis tool built on the DPCL system can avoid storing
large volumes of trace or other collected data.

� enabling the user of the analysis tool to interactively tailor the type of data
collected to match his or her needs. A user might want to do this, for example,
in order to examine different hypotheses regarding the target application's
performance. Since the user could alter the type of data collected without
having to stop and restart the target application, this reduces the need to run
the target application multiple times in order to collect the required data.

Additional advantages of dynamic instrumentation in general, as well as specific
advantages of the DPCL system, are described in “Why is it advantageous to build
analysis tools on the DPCL system?” on page 21. Before you can fully appreciate
the advantages of building analysis tools on the DPCL system, you need to
understand more about the DPCL system (as described next in “What is the DPCL
system?”).

What is the DPCL system?
The DPCL system is an asynchronous software system whose client/server
architecture enables analysis tools to connect to, and insert instrumentation probes
into, one or more target application processes. What's more, the DPCL system
encapsulates a parallel infrastructure, making it ideally suited for analyzing parallel
programs. The DPCL system consists of several conceptual parts including:

� A class library whose Application Programming Interface (API) enables you to
build analysis tools on the DPCL system.

6 IBM PE for AIX V3R1.0: DPCL Programming Guide

� Daemon processes that connect to the target application process(es) to
perform work requested by the analysis tool through the DPCL API function
calls.

� Instrumentation probes that the analysis tool defines and inserts (via DPCL API
function calls and daemons) into the target application to collect data.

� An asynchronous communication callback facility that connects the class library
with the daemons. It is this callback facility that enables an analysis tool to
respond to data collected and sent by its probes.

The following figure illustrates how the parts of the DPCL system work together to
enable an analysis tool to instrument a serial target application.

DPCL Analysis Tool

Analysis
Tool
Code DPCL

Callbacks

Dynamic
Probe Class
Library

DPCL
Super Daemon

DPCL
Communication

Daemon

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

Client Machine Server Machine

a

b

c

d

e

Figure 1. Instrumenting a serial target application

The preceding figure illustrates how the parts of the DPCL system work together to
enable an analysis tool to instrument a serial target application. For additional
explanation of this figure, refer to the following key:

�a� The analysis tool calls DPCL functions which request services from the
DPCL communication daemon.

�b� The DPCL superdaemon coordinates the creation and removal of the
DPCL communication daemon. It establishes the socket connection to
the analysis tool, and then spawns (and transfers the socket connection
to) the DPCL communication daemon.

�c� The DPCL communication daemon translates API function requests into
the desired action (for example, the installation or removal of probes in
the target application).

�d� Probes within the target application process send data to the DPCL
communication daemon.

�e� The DPCL communication daemon forwards data collected by the
probe(s) back to the analysis tool, triggering the appropriate callback
routine in the analysis tool.

This next figure is similar to the preceding one, except that it shows how the parts
of the DPCL system work together to enable an analysis tool to instrument a
parallel target application. The preceding figure's key applies to this next figure as

 Chapter 1. What is DPCL? 7

well; refer to it for additional information. Note in this figure that only a single DPCL
communication daemon runs, per user, on each server machine. If the analysis tool
connects to multiple target application processes running on the same server
machine, then that server machine's DPCL communication daemon will coordinate
the communication with all of the processes.

Client Machine Server Machines

DPCL
Communication

Daemon

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

DPCL
Super Daemon

DPCL
Communication

Daemon

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

DPCL
Communication

Daemon

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

DPCL
Super Daemon

DPCL
Communication

Daemon

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

DPCL
Communication

Daemon

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

DPCL
Super Daemon

DPCL
Communication

Daemon

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

DPCL Analysis Tool

Analysis
Tool
Code DPCL

Callbacks

Dynamic
Probe Class
Library

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

Target Application
Process

Target
Application

Code

DPCL
Probe(s)

a

a

a

b

b

b

c

c

c

c

d

d

d

d

e

e

e

Figure 2. Instrumenting a parallel target application

The remainder of this section describes each part of the DPCL system (the target
application, the analysis tool, the class library, the callbacks, the daemons, and the
probes) in greater detail.

8 IBM PE for AIX V3R1.0: DPCL Programming Guide

What is a DPCL target application?
A target application is an executable program into which the analysis tool inserts
probes. A target application could be a serial or a parallel program. Furthermore, if
the target application is a parallel program, it could follow either the Single Program
Multiple Data (SPMD) or the Multiple Program Multiple Data (MPMD) model, and
may be designed for either a message-passing or a shared-memory system.

What is a DPCL analysis tool?
An analysis tool (in the context of the DPCL product) is a C++ application that links
in the DPCL library and uses the DPCL API calls to instrument (create probes and
insert them into) one or more target application processes. In addition to containing
code not related to accessing DPCL system functionality (such as defining the user
interface), the analysis tool will also contain DPCL callback routines designed to
respond to data sent back from the probes it has installed in the target application.
Typically, an analysis tool is designed to measure program efficiency, confirm
program correctness, or monitor program execution.

The DPCL system is designed to provide you, the creator of analysis tools, with a
scalable general-purpose infrastructure for instrumenting target applications. In
other words, the DPCL system concentrates on enabling your analysis tool to
connect to the target application process(es), and then dynamically insert and
remove probes as needed. You concentrate on creating the actual probes, and
leverage the DPCL system's ability to insert them into one or more target
application processes. What's more, the DPCL system encapsulates a parallel
infrastructure, making it ideally suited for analyzing parallel programs. This design
affords you a large degree of flexibility. For example, an analysis tool could be a
complex and general-purpose tool like a debugger, or it might be a simple and
specialized tool designed for only one particular program, user, or situation.

What is the DPCL API?
DPCL's Application Programming Interface (API) is the key means by which the
analysis tool interacts with the DPCL system to effectively instrument a target
application. Along with the DPCL callbacks (which enable an analysis tool to
respond asynchronously to data sent from installed probes), the DPCL API is what
enables the analysis tool to leverage the capabilities of the DPCL system. The
DPCL API contains:

� three classes that the analysis tool can use to represent, and act upon, the
target application. These are the Process class (used to represent a single AIX
process), the Application class (used to represent a group of related AIX
processes), and the PoeAppl class (a class derived from the Application class
and used specifically to represent POE applications). Member functions of
these classes enable an analysis tool to:

– connect to target application processes

– create new target application processes in a stopped state

– start execution of target application processes

– allocate and free memory for probes within target application processes

– execute probes within target application processes

– disconnect from target application processes

– suspend and resume execution of target application processes.

 Chapter 1. What is DPCL? 9

– terminate target application processes.

� a ProbeExp class that the analysis tool can use to build data structures called
"probe expressions". These probe expressions represent code that the analysis
tool can execute within one or more target application processes. The ProbeExp
class overloads common operators so that expressions do not execute locally,
but instead call member functions that create the probe expressions. Additional
member functions of the ProbeExp class enable the analysis tool to create
probe expressions representing conditional logic, a sequence of probe
expressions, or a function call. The analysis tool can then insert these probe
expressions into the target application process(es) for execution.

� Two classes that enable an analysis tool to navigate the source code structure
of the target application, and identify locations where the analysis tool can
safely install instrumentation probes. These classes are the:

– SourceObj class. Objects of this class represent part of the source code
structure, and a group of such objects provide the hierarchical
representation of the target application's source code which the analysis
tool can navigate.

– InstPoint class. Objects of this class represent locations in the target
application code where the analysis tool can install probes.

Be aware that the above is just a quick summary of some of the main classes and
functional capabilities of the DPCL API. For more information about the DPCL
classes, refer to Chapter 2, “What are the DPCL classes?” on page 25. For
complete reference information on the DPCL API, refer to the IBM Parallel
Environment for AIX: DPCL Class Reference.

What are blocking and nonblocking API calls?: There are two types of DPCL
API calls — blocking calls (also referred to as pseudo-synchronous or
semi-synchronous service requests) and nonblocking calls (also referred to as
asynchronous service requests). Much of the functionality of the DPCL system is
available in both blocking and nonblocking versions. For example, to connect to a
target application, an analysis tool could call either a blocking function (bconnect) or
a nonblocking function (connect). As this example implies, the naming convention
for a blocking function is to prefix the letter "b" to the name of the nonblocking
function.

To understand why the DPCL API includes both blocking and nonblocking versions
of the same functionality, it is important to recall that the DPCL system is an
asynchronous system that, by definition, acts upon events that, if they occur, will do
so at an undetermined time and in an undetermined order. The nonblocking
functions are designed to take advantage of the asynchronous nature of the DPCL
system; calls to such functions return immediately without waiting for a response
from the DPCL system. When an analysis tool calls an asynchronous, nonblocking
function, it can specify the name of a callback routine that will respond to status
returned by the DPCL system. The callback not only enables the analysis tool to
perform status error checking, but also enables it to be structured in a more
event-driven manner. When analyzing parallel programs, certain performance
benefits can usually be realized by leveraging the event-driven nature of the
asynchronous functions. The Application class, for example, is a grouping of
related Process class objects that enables the analysis tool code to manipulate a
set of related AIX processes as a single unit. For the asynchronous Application
class functions, the callback routine that responds to the successful or unsuccessful
completion of the operation will execute for each process individually. The callback

10 IBM PE for AIX V3R1.0: DPCL Programming Guide

routine, in addition to performing error checking to ensure that the operation was
successful for the particular process, could contain code for the next action to be
performed on the process. In other words, the analysis tool could continue work on
one process without waiting for the operation to complete on the other processes.

The blocking functions, on the other hand, are designed to hide the complexity of
the asynchronous system; calls to such functions do not return control to the
analysis tool until they either succeed or fail in carrying out the requested service.
This means that callbacks are not needed; instead, the code to act upon the
function return value can be placed right after to call to the function. Keep in mind,
however, that these so-called "blocking" functions are not truly synchronous;
instead they merely mimic a synchronous system while allowing the DPCL system
to continue processing events not related to the blocking request. For example,
data being sent from probes could still be processed by other callback routines
while execution is supposedly "blocked" and waiting for the function to return. That
is why the blocking functions are referred to as "pseudo-synchronous" or
"semi-synchronous" service requests. We designed the blocking functions to be
pseudo-synchronous in order to provide a simple blocking interface that helped
avoid program deadlock by allowing the DPCL system to continue processing other
requests while "blocked".

//Blocking Connect

bconnect

//Blocking Install
//Probe

binstall_probe

//and so on...

Results

X xterm

$ my_DPCL_analysis_tool &
Connecting to processes
Connected to all processes
Installing probes in processes
Probes installed in all processes

Figure 3. Blocking function calls (pseudo-synchronous service requests). Calls to blocking
functions do not return control to the analysis tool until they either succeed or fail in carrying
out the requested service. The blocking functions provide a simpler interface, and so are
preferable for applications that don't need to take advantage of the finer level of control
available in an asynchronous system. In particular, if the analysis tool is instrumenting a
serial application, the blocking functions are probably preferable.

 Chapter 1. What is DPCL? 11

// Asynchronous
// Connect

connect

Results

// Asynchronous
// Install Probe

install_probe

//and so on...

// Draw Main
// Window

connect
callback routine

install_probe
callback routineX xterm

$ my_DPCL_analysis_tool &
Sending asynch-connect request
Opening main window...
Connected to process 2032 on node london
Connected to process 5546 on node paris
Installed probe in process 2032 on node london
Connected to process 3027 on node montreux
Installed probe in process 5546 on node paris
Installed probe in process 3027 on node montreux
Connected to process 3321 on node chicago
Connected to process 2533 on node dublin
Installed probe in process 3321 on node chicago
Connected to process 2020 on node miami
Installed probe in process 2533 on node dublin
Installed probe in process 2020 on node miami

Figure 4. Nonblocking function calls (asynchronous service requests). The nonblocking
functions are designed to take advantage of the asynchronous nature of the DPCL system.
Calls to nonblocking functions return immediately upon issuing the service request, without
waiting for a response to the request from the DPCL system. Instead, a callback routine
responds to the return value from the system. The nonblocking functions can be harder to
program, but enable the analysis tool to leverage the finer level of programmatic control.

What are DPCL callbacks?
DPCL callbacks are routines called by the DPCL system when certain messages
arrive from a DPCL daemon. When an analysis tool initializes itself to use the
DPCL system, one of the things it does is enter the DPCL main event loop so that
it can interface asynchronously with the DPCL system. The DPCL main event loop
listens to file descriptors and sockets for input; there will be one socket for each
remote node to which the analysis tool is connected. Remember that the
communication to and from each target application process is handled by a DPCL
daemon. A DPCL daemon may send two types of messages to the analysis tool. A
DPCL daemon may send a message:

� indicating whether a particular service requested by a DPCL function
succeeded or failed.

� containing data from probes that the analysis tool has installed in the target
application.

When the DPCL main event loop detects input on a file descriptor that is connected
to a DPCL daemon, it calls a dispatch routine for the file descriptor or socket. If the

12 IBM PE for AIX V3R1.0: DPCL Programming Guide

input is on a file descriptor representing a socket connection to a DPCL daemon,
the message is examined and the appropriate callback for the message type is
executed. Since there are two types of messages that can be sent from a DPCL
daemon, there are two types of callbacks — acknowledgment callbacks and data
callbacks. Acknowledgment callbacks are callbacks that respond to the success or
failure of an asynchronous, nonblocking, function call. Data callbacks are callbacks
that respond to probe data forwarded by the DPCL daemon.

All callback routines have the same parameters. These parameters include:

� a data structure with values indicating:

– the socket or file descriptor over which the message was received

– the message type

– the size of the message sent

� a tag value supplied by the analysis tool when it installed the probe or called
the asynchronous function.

� a pointer to the object that registered the callback routine. This would be the
instance of the DPCL class object that installed the probe or called the
asynchronous function.

� a raw byte stream containing the actual message — the probe data or the
function return status.

What are the DPCL daemons?
There are two types of DPCL daemons — DPCL communication daemons and
DPCL superdaemons.

� DPCL superdaemons are created the first time an analysis tool calls an API
routine to connect to one or more target application processes on a given node.
These superdaemons create the DPCL communication daemons, and are
responsible for ensuring that only one such daemon exists on each remote
host. They also perform user authentication on the remote host.

� DPCL communication daemons handle the communication between the
analysis tool and target application processes. This is the daemon attached to
the target application process that will perform much of the actual work
requested, via DPCL function calls, by the analysis tool. This daemon also
relays the data collected by instrumentation probes within the target application
back to the analysis tool.

In order for the DPCL daemon processes to be as unobtrusive as possible, we
have designed the DPCL system so that only one DPCL communication daemon
per user and only one DPCL superdaemon will be running on each host machine at
a time. Furthermore, we have ensured that these daemons are not persistent; they
will terminate when the analysis tool issues a service request to disconnect from
the target application process.

To better understand the purpose and life cycle of the two types of DPCL daemons,
it is worthwhile to understand how they are created, used, and destroyed. First, an
analysis tool will need to connect to the target application processes. To do this:

1. The analysis tool calls a DPCL function to connect to one or more target
application processes.

 Chapter 1. What is DPCL? 13

2. The DPCL function creates a socket connection from the analysis tool to the
inetd daemon running on the host where the target application process is
running.

3. The inetd daemon spawns a new daemon process — a DPCL superdaemon
process. This DPCL superdaemon inherits the analysis tool socket connection.

4. The DPCL superdaemon checks to see if there is already a DPCL
superdaemon running on the host machine. If so, it transfers the analysis tool
socket connection to the existing DPCL superdaemon and exits. If there is no
other existing DPCL superdaemon on the host machine, then the DPCL
superdaemon does not exit; it becomes the DPCL superdaemon for the host
machine.

5. The DPCL superdaemon performs user authentication to ensure that the
analysis tool user is authorized to run on the remote host.

6. The DPCL superdaemon checks to see if there is a DPCL communication
daemon running for this user on the host machine.

� If there is a DPCL communication daemon for this user already running, the
DPCL superdaemon passes the analysis tool socket connection over to the
DPCL communication daemon.

� If there is no DPCL communication daemon for this user running on the
host, the DPCL superdaemon spawns one. This DPCL communication
daemon inherits the analysis tool socket connection and will handle
communication between the analysis tool and the installed probes.

If the target application is a parallel application, similar connections and daemons
need to be created for each host on which the target application processes are
running. Once the analysis tool is connected via the DPCL communication
daemon(s) to the target application process(es):

� The analysis tool may issue API function calls to, for example, install or remove
probes. The DPCL functions send messages to the DPCL communication
daemon(s), which translate the messages into the desired action.

� Probes installed within the target application process(es) may send collected
data to the DPCL communication daemon(s), which will relay these messages
back to the analysis tool.

Finally, when the analysis tool is done collecting data, it will need to disconnect
from the target application processes. To do this:

1. The analysis tool calls a DPCL function to disconnect from one or more target
application processes.

2. The DPCL function sends a disconnect message to the DPCL communication
daemon. Provided the DPCL communication daemon is not connected to other
analysis tools, it asks the DPCL superdaemon if it can exit.

3. If there are no analysis tools attempting to connect to one or more target
application processes on this host, the DPCL superdaemon tells the DPCL
communication daemon that it can exit.

4. The DPCL communication daemon exits.

5. If the DPCL communication daemon that exited was the last DPCL
communication daemon running on this host, the DPCL superdaemon exits.

14 IBM PE for AIX V3R1.0: DPCL Programming Guide

Since we have designed the DPCL system so that only one DPCL communication
daemon per user will be running on a given host, this means that a single DPCL
communication daemon may be coordinating the communication between multiple
target application processes and/or multiple analysis tools. The following figure
illustrates the possible connection variations that can exist for a single user on a
single host machine.

DPCL
Communication

Daemon

DPCL
Analysis
Tool

Target
Application
Process

DPCL
Communication

Daemon

DPCL
Analysis
Tool

Target
Application
Process

Target
Application
Process

DPCL
Communication

Daemon

DPCL
Analysis
Tool

Target
Application
Process

Target
Application
Process

DPCL
Analysis
Tool

DPCL
Analysis
Tool

DPCL
Analysis
Tool

DPCL
Communication

Daemon

Target
Application
Process

A Single Target Application Process Multiple Target Application Processes

A
Single

Analysis
Tool

Multiple
Analysis

Tools

Figure 5. DPCL communication daemon. Each host machine has only one DPCL communication daemon per user.
It may coordinate the communication between multiple target application processes and/or multiple analysis tools.
Keep in mind that this figure illustrates a single user and a single host machine. Each user connected to a DPCL
target application process on the host will have a separate DPCL communication daemon running. Likewise, each
user will have a separate DPCL communication daemon for each host that is running target application process(es) to
which he or she is connected.

What is a probe?
The term probe refers to the software instrumentation code patch that your analysis
tool can insert into the target application. Probes are created by the analysis tool,
and therefore are able to perform any work required by the tool. For example,
depending on the needs of the analysis tool, probes could be inserted into the
target application to collect and report performance information (such as execution
time), keep track of pass counts for test coverage tools, or report or modify the
contents of variables for debuggers.

Probes are created by the analysis tool using a combination of probe expressions
and probe modules (described next in “What is a probe expression?” and “What is
a probe module?” on page 17). For the purposes of this book, a probe is defined
as "a probe expression that may optionally call functions".

What is a probe expression?
A probe expression is a simple instruction or sequence of instructions that
represents the executable code to be inserted into the target application. Probe
expressions are abstract syntax trees — data structures that represent the logic to
be performed by the probe within the target application process(es).

The term "abstract syntax tree" is one we have borrowed from compiler technology.
These data structures are called "abstract" because they are removed from the
syntactic representation of the code. For example, an abstract syntax tree for the
expression a + (b x c) is identical to the abstract syntax tree for the expression a +

 Chapter 1. What is DPCL? 15

b x c (where only precedence rules force the multiplication operation to be
performed first).

a

+

b c

*

Figure 6. Abstract syntax tree. This abstract syntax tree formed from either the expression
a + (b * c) or the expression a + b * c.

Compilers need to create abstract syntax trees from a program's source code as an
intermediary stage before manipulating and converting the data structure into
executable instructions. Since the DPCL system also needs to create executable
instructions (for insertion into one or more target application processes), it also
needs to create these abstract syntax trees. When the analysis tool inserts a probe
expression into one of more target application processes, the DPCL system uses
compilation techniques to manipulate these abstract syntax trees into executable
instructions that will run as part of the target application process(es).

From the DPCL programmer's point of view, the procedure for creating a probe
expression can be a "building block" task in which smaller probe expressions are
eventually combined and sequenced into the full probe expression.

For example, the analysis tool can create probe expressions representing constant
or variable values, and then combine these into more complex probe expressions
representing simple operations on the values, or function calls that pass the values
as parameters to the function. The analysis tool could then take two of these more
complex probe expressions and combine them into a single probe expression that
represents a sequence of the two existing expressions. Then the analysis tool could
join two such sequences into a longer sequence or combine them into a conditional
statement. This process of combining and sequencing smaller probe expressions
into larger ones would continue, depending on the complexity of the probe logic,
until the analysis tool has a single probe expression representing the full probe
logic.

The class for creating probe expressions is the ProbeExp class. Constructors of this
class enable your code to create probe expressions that represent temporary data
variables. Functions of other DPCL classes enable your code to create probe
expressions that represent persistent data variables. To create probe expressions
to represent operations, the ProbeExp class has overloaded common operators so
that expressions written within the context of the class do not execute locally, but
instead call member functions designed to create a probe expression that
represents the particular operation. Probe expressions to represent arithmetic,
bitwise, logical, relational, assignment, and pointer operations can all be created in
this way. These probe expressions can then in turn be used as subexpressions in
forming other probe expressions — ones representing more complex operations.
Other functions of the ProbeExp class (ones that must be called explicitly) enable
your code to create a probe expression to represent a sequence of two existing
probe expressions, a conditional statement, or a function call.

16 IBM PE for AIX V3R1.0: DPCL Programming Guide

Although an analysis tool can create probe expressions to perform conditional
control flow, integer arithmetic, and bitwise operations, the programmatic
capabilities of probe expressions are rather limited. When more complicated probe
logic is needed (such as iteration, recursion, and complex data structure
manipulation), a probe expression can direct the target application to call a function
in a probe module.

What is a probe module?
A probe module is a compiled object file containing one or more functions written in
C. Once an analysis tool loads a particular probe module into a target application, a
probe is able to call any of the functions contained in the module.

What are the three types of probes?
As already stated, a probe is a probe expression that may optionally call functions.
There are three types of probes; they are differentiated by the manner in which
their execution is triggered. The three types of probes are:

� point probes (which are installed at particular locations in the target application
code and, when in an activated state, are triggered whenever execution
reaches that location in the code).

� phase probes (which are triggered by expiration of a timer and executed
regardless of what code the target application is executing).

� one-shot probes (which are executed once and immediately, regardless of what
code the target application is executing).

Each probe type has different intended uses, and together are designed to enable
an analysis tool to efficiently instrument a target application. By "efficiently
instrument", we mean "to collect the necessary data and display it in a timely
manner while minimizing the instrumentation's intrusion cost to the target
application".

What is a point probe?: Point probes are probes that the analysis tool places at
particular locations within one or more target application processes. When placed in
an activated state by the analysis tool, a point probe will run as part of a target
application process whenever execution reaches its installed location in the code.
The fact that point probes are associated with particular locations within the target
application code makes them markedly different from the other two types of probes
(which are executed at a particular time regardless of what code the target
application is executing).

To install a point probe within one or more target application processes, the
analysis tool must navigate the source code structure of the target application to
identify locations where it can safely install point probes. The analysis tool
navigates the source code structure by means of source objects (represented by
instances of the SourceObj class); the locations where point probes can be installed
are called instrumentation points (represented by instances of the InstPoint class).

What are source objects?: Source objects provide a coarse, source-code-level,
view of a target application process, and enable an analysis tool to display or
navigate a hierarchical representation of a particular target application process.
After connecting to a process, the analysis tool can get the top-level source object
(called the "program object") for the process; the analysis tool does this by calling
the member function Process::get_program_object. This function returns the
top-level source object (an instance of the DPCL class SourceObj). Since

 Chapter 1. What is DPCL? 17

applications can be quite large, the initial source object provides only a very coarse
view of the source structure; essentially, it is just a list of the modules (compilation
units) contained in the target application process. Each of these modules is itself a
source object and is considered a child of the program source object.

To navigate down into the source structure of a module, an analysis tool gets a
reference to one of these module source objects (using the member function
SourceObj::child) and expands it (using the SourceObj::expand or its blocking
equivalent SourceObj::bexpand). Expanding a module source object returns the
additional structure of the module — including data, functions, and instrumentation
points.

It is important to keep in mind that the program object and all its child module
objects reflect the source hierarchy associated with a particular process only. This
means that, in some cases, the analysis tool will need to navigate multiple source
hierarchies (as described in the following table).

If the target application is: Then:

A serial program. The analysis tool need only navigate the target application's
single source hierarchy.

A parallel program that follows the Single Program Multiple
Data (SPMD) model.

Each process in the target application has the same source
and, therefore, the same source hierarchy. The analysis tool
need only navigate a single source hierarchy.

The analysis tool still has the option to either insert identical
instrumentation in each of the processes, or else instrument
the processes differently.

A parallel program that follows the Multiple Program Multiple
Data (MPMD) model.

There are multiple programs, and, therefore, the analysis tool
will need to navigate multiple source objects.

What are instrumentation points?: Instrumentation points are locations within a
target application process where an analysis tool can install point probes.
Instrumentation points are locations that the DPCL system determines are safe to
insert new code. Such locations are:

 � function entry

 � function exit

 � function call

Instrumentation points are obtained from source objects, at the function level, using
the SourceObj::exclusive_point or SourceObj::inclusive_point functions. Both
functions take an integer index value as an input value and return an
instrumentation point as a result. The difference between the two is that the
SourceObj::exclusive_point function gives the analysis tool access only to
instrumentation points that are tied to that particular source object in the source
object hierarchy, while the SourceObj::inclusive_point function gives the analysis
tool access to all instrumentation points associated with the given source object
and all of its lower level source objects in the source object hierarchy.

When should an analysis tool use a point probe?: An analysis tool should use a
point probe when it needs to collect data associated with a particular location in the
target application's code.

To better understand when it is useful, and when it is not useful, to use a point
probe, consider the following hypothetical situation. Say your analysis tool is a

18 IBM PE for AIX V3R1.0: DPCL Programming Guide

profiler that needs to measure the accumulation of floating point counts by function.
Say also that this analysis tool is a Java client that needs to periodically refresh
itself to display the newly-collected data to the user. Since the functions are specific
locations in the target application code, you would need to use point probes to
measure them effectively. In this particular example, you would set up two point
probes for each function — one at the beginning of the function and one at the end.
Each time the function starts executing, the first probe would determine the number
of floating point instructions executed up to that point. Later, the second probe
would determine the number of floating point instructions executed, and, by
subtracting the first figure from the second, the number of floating point instructions
executed within the function.

So in this example, you would use a set of point probes to collect the data. Keep in
mind, however, that it is not enough to simply accumulate collected data within the
target application process(es) as we have in this example. Remember that we also
need to communicate this information back to the analysis tool. In this case, we
have said that our hypothetical application needs to periodically refresh its Java
client to display the newly-collected data. We could have the point probes
themselves send their collected data back to the analysis tool, but this would not be
an efficient solution. You would not, in this example, want to send data back to the
analysis tool using the point probes because such probes located in
frequently-executed functions could swamp the network with messages and, in
doing so, take a valuable resource away from the target application. This solution
would be unacceptable, as it would likely slow the target application appreciably;
the instrumented version of the target application would no longer be representative
of the actual, uninstrumented, version of the target application. While point probes
are useful for collecting the data in this example, the actual communication of that
data back to the analysis tool would be better handled using phase probes (as
described in “What is a phase probe?”) or one-shot probes (as described in “What
is a one-shot probe?” on page 20).

What is a phase probe?: Phase probes are probes that are executed
periodically, upon expiration of a timer, regardless of what part of the target
application's code is executing. A phase probe, unlike the other two types of
probes, must call a probe module function; in other words, a phase probe cannot
be a simple probe expression that does not call a probe module function. The
control mechanism for invoking these time-initiated phase probes is called a phase.

What is a phase?: Phases are the control mechanism for invoking phase probes
at set intervals. Represented by instances of the Phase class, phases enable your
analysis tool code to specify the particular phase probe(s) to be invoked and the
CPU-time interval at which their execution is triggered. The set interval at which a
phase is activated to invoke its phase probes is called the phase period. Although
the phase period is initially defined when the analysis tool first creates the phase,
the analysis tool can later lengthen or shorten the phase period as desired.

A phase can, each time the phase period expires, call up to three phase probes. As
already stated, a phase probe must call a probe module function, so the phase is
actually triggering calls to up to three probe module functions — a begin function, a
data function, and an end function. While the phase must, in order to be useful, call
at least one of these functions, any one of them is optional. At the very least, an
analysis tool will usually supply a data function.

 Chapter 1. What is DPCL? 19

When a phase is added to a target application process, it will, once the phase
period expires, be activated by the DPCL system. (The DPCL system uses a
SIGPROF signal to activate a phase, so be aware that target applications that
themselves use the SIGPROF signal cannot be instrumented with phases.) Once
the phase is activated, it will call the phase probe module functions that have been
associated with it. The first phase probe it calls is the one identifying the begin
function (provided one has been specified). Typically, the begin function will
perform any setup tasks that may be required. When the begin function completes,
the phase calls the phase probe that identifies the data function (provided one has
been specified). The data function executes once per datum that the analysis tool
will have previously allocated and associated with this phase. Executing once per
datum enables the data function to perform the same actions on different data.
Each datum, for example, could be a separate counter — each incremented by the
same data function. If the analysis tool does not associate any data with the phase,
then the data function will not execute. When the data function finishes executing
for the last datum, the phase calls the phase probe that identifies the end function
(provided one has been specified). Typically, the end function performs any clean
up chores that may be required.

When should an analysis tool use phases to invoke phase probes?: An analysis
tool should use phases and phase probes whenever necessary work is best done
on a periodic basis. For example, in “When should an analysis tool use a point
probe?” on page 18, we described a hypothetical situation in which an analysis tool
needed to measure the accumulation of floating point counts by function. While we
determined that point probes placed inside functions were the best way to collect
data, we also determined that they were an impractical way to send that data back
to the analysis tool. We determined point probes would be impractical because
such probes located within frequently-executed functions would utilize too much of
the available network communication resource, and so slow the target application
unacceptably.

In this example, a phase that triggers one or more phase probes at a set interval
would be an ideal way to communicate the data collected by the point probes back
to the analysis tool. By using a phase, you would be able to tune how often you
send updates back to the target application. While you cannot control how often the
point probes are executed to gather the data, you can use a phase to govern how
often a phase probe is triggered to send the collected data back to the analysis
tool. What's more, since the analysis tool can modify the phase period to trigger
execution of the phase probe more frequently or less frequently, the analysis tool
could dynamically govern how often the data is sent. For example, our hypothetical
analysis tool could also monitor network traffic or the target application's
performance to determine if the intrusion cost of the data being sent from the phase
probes is too great. If so, the analysis tool could modify the phase period so that
the data is sent less often.

What is a one-shot probe?: A one-shot probe is a type of probe that is executed
by the DPCL system immediately upon request, regardless of what the application
happens to be doing.

When should an analysis tool use a one-shot probe?: An analysis tool should use
a one-shot probe whenever it wants to explicitly and immediately execute code
within the target application process on a one-time basis. Most commonly, analysis
tools would use one-shot probes to:

20 IBM PE for AIX V3R1.0: DPCL Programming Guide

� Perform setup or cleanup activities for other probes. For example, say an
analysis tool has installed a set of point probes to write trace data to a file.
Before data collection starts, the analysis tool could execute a one-shot probe
to open the trace file. When data collection is complete, and the other probes
are through writing to the trace file, the analysis tool could execute another
one-shot probe to flush the file descriptor and close the trace file.

� Get a "snapshot" of a particular measure at a particular time. For example, the
analysis tool could execute a one-shot probe to call AIX subroutines like
getrusage, times, or vtimes to get performance and system-resource
information for a target application process.

For example, in “When should an analysis tool use a point probe?” on page 18, we
introduced a hypothetical analysis tool that, in order to measure the accumulation of
floating point counts by function, installed a set of point probes to collect this data.
We continued this same example in “When should an analysis tool use phases to
invoke phase probes?” on page 20 by using a phase probe to minimize network
traffic by only periodically sending the data back to the analysis tool to be displayed
to the operator. Suppose now that, as the creator of this analysis tool, you wanted
to add a "Refresh" button to the tool's graphical user interface so that the operator
could force the tool to update itself with the most current information. To do this,
the analysis tool could, whenever the operator clicks on the "Refresh" button,
execute a one-shot probe to send the most recently collected data back to the
analysis tool for display.

Why is it advantageous to build analysis tools on the DPCL system?
Our original motivation for creating the DPCL system came from the observation
that customers were often asking for more application performance analysis tools
than tool suppliers had the resources to build. High performance application
developers were asking for tools that would provide detailed, accurate information
about I/O usage, cache (and other memory usage), CPU and functional unit usage,
message passing and synchronization, and operating system effects. Furthermore,
they were asking for application profiles to identify problems, and event traces to
determine the root causes of problems.

However, while programming tools were becoming more expensive to build and
maintain, available tool development resources were shrinking rapidly. More tools
were needed, but fewer tools could be created. So, in creating the DPCL system,
our goals were to:

� Reduce the cost of developing new tools. The DPCL system accomplishes
this goal by providing a scalable general-purpose infrastructure that enables
analysis tools to instrument target applications. Its relatively simple application
programming interface enables analysis tools to easily connect to target
applications, and insert probes to perform typical tasks such as reading system
counters and program variables. What's more, the DPCL system encapsulates
a parallel infrastructure, making it ideally suited for analyzing parallel programs.
To create an analysis tool without the benefit of the DPCL system would be a
highly nontrivial job involving more complicated and time-consuming
programming. For example, you would have to:

– employ compilation techniques before you could insert the instrumentation
probes into the executable you want to examine

 Chapter 1. What is DPCL? 21

– create careful locking mechanisms to ensure that the analysis tool and
target application do not write to the same files

– set up sockets to enable the instrumentation probes that you place inside
the target application to send collected data back to the analysis tool.

– set up some system of callbacks in the analysis tool to handle the data
being sent back from the instrumentation probes in the target application.

– address scalability issues if you intend to use your tool to analyze scalable
parallel programs.

Not only would you have to create an application from scratch to do all that,
but, since analysis tools must be very careful not to adversely effect the target
application's performance, you must manage to do all these things in such a
way that the interference, or "intrusion cost", to the target application is minimal.
This is essential, because if the intrusion cost is too great, then the data you're
collecting from executing the instrumented version of the target application is
no longer representative of the actual, uninstrumented program.

By building your analysis tool on top of the DPCL system, however, you are
able to easily leverage its capabilities and thus can spare yourself the
burdensome programming chores outlined above. What's more, by saving you
the time and effort normally associated with developing analysis tools, the
DPCL system effectively reduces the cost of developing new tools.

� Reduce the intrusion cost of instrumentation. As already stated, it is
essential that the instrumented version of the target application is still
representative of the actual, uninstrumented version of the application. The
DPCL system is able to easily reduce the instrumentation intrusion cost that
can be quite problematic for more traditional software instrumentation
techniques. This is because the DPCL system is based on dynamic
instrumentation, and so can add instrumentation probes to, and remove them
from, the target application while it is running. That means that the
instrumentation code need only reside in the target application for as long as it
is needed to gather data, and that decisions regarding what data should be
collected can be made and changed during the program's execution. For
example, if a problem is suspected, an instrumentation probe can be inserted
into the target application to gather just the data needed to verify if the
suspected problem does in fact exist. If the probe does verify that the problem
exists, it can be removed and replaced by another probe designed to ascertain
the cause of the problem. If the original probe, however, concludes that the
problem does not exist, then it could be removed and replaced by a probe
designed to verify a different hypothesis.

This ability to make and change data collection decisions during execution is
unique to dynamic instrumentation. All other methods of instrumentation require
you to make data collection decisions before running the program, and often
before compiling or linking the program. Such restrictions often result in one
choosing to gather more data than is actually needed, thus increasing the
intrusion cost of the instrumentation.

� Enable the creation of common tools across an organization or industry.
The DPCL system accomplishes this goal by its very nature; it is a
general-purpose and reusable class library that provides a common architecture
to all analysis tools that are built on it.

� Enable greater flexibility and interoperability among tools. Since the DPCL
system provides a common architecture to all analysis tools that are built on it,

22 IBM PE for AIX V3R1.0: DPCL Programming Guide

it is able to work with multiple analysis tools concurrently. This means you can
use more than one analysis tool (for example, a test coverage tool and an
application profiler) on the same target application at the same time.

� Increase industry innovation in tool development, and, in doing so,
increase the number and variety of programming tools. A side benefit of
reducing the cost of developing new tools is that it then becomes cost effective
to experiment with more speculative analysis techniques. By building analysis
tools on the DPCL system, novel and innovative ideas can be evaluated
inexpensively, leading to a greater variety of tools available to the whole
industry.

 Chapter 1. What is DPCL? 23

24 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 2. What are the DPCL classes?

The following information is a summary of each of the DPCL classes that your
analysis tool can use to instrument a target application. Before reading this
information, you should first understand the concepts introduced in Chapter 1,
“What is DPCL?” on page 3 (which provides a high-level description of the DPCL
system and shows how its various parts work together to enable analysis tools to
instrument one or more target application processes). The following DPCL class
summary builds on this earlier description of the DPCL system by describing the
DPCL classes that represent the elements of the DPCL system (target application
processes, probes, instrumentation points, and so on). In doing so, it provides an
overview of the purpose of each class, along with information on its supporting data
types and functions. For complete reference information on any of the classes, data
types, and functions summarized here, refer to DPCL's AIX man pages or the IBM
Parallel Environment for AIX: DPCL Class Reference.

The following summary of the DPCL classes and functions is divided into the
following sections:

� “What are the Process, Application, and PoeAppl classes?” describes the three
classes that an analysis tool can use to represent, and act upon, target
application process(es).

� “What are the ProbeExp, ProbeHandle, and ProbeModule classes?” on
page 39 describes three classes that an analysis tool can use to represent,
and act upon, probes.

� “What are the SourceObj and InstPoint classes?” on page 48 describes two
classes that the analysis tool can use to examine the source code associated
with a target application process and identify instrumentation points (locations
where point probes can be installed).

� “What is the ProbeType class?” on page 55 describes the class that the
analysis tool can use to represent the data type of an object within a target
application process.

� “What is the Phase class?” on page 57 describes the class that the analysis
tool can use to represent the control mechanism for invoking phase probes at
set intervals.

� “What is the AisStatus class?” on page 58 describes the class used to store
status information.

What are the Process, Application, and PoeAppl classes?
This section describes the three classes that an analysis tool can use to represent,
and act upon, the target application process(es). These are the Process class
(described in “What is the Process class?” on page 26 and used to represent a
single AIX process), the Application class (described in “What is the Application
class?” on page 32 and used to represent a group of related AIX processes), and
the PoeAppl class (described in “What is the PoeAppl class?” on page 39, this
class is derived from the Application class, and used to represent POE
applications).

 Copyright IBM Corp. 2000 25

What is the Process class?
The Process class (defined in the header file Process.h) is the most fundamental of
all the DPCL classes. Instances of this class represent a single target application
process. The analysis tool can use objects of this class to connect to an existing
target application process, or create a new process. First, the analysis tool creates
an instance of the Process class. Depending on the constructor used, the Process
object may, or may not, have values that identify a particular AIX process by host
name and process ID.

� If the Process object is created with one of the non-default constructors, the
analysis tool will have supplied a process ID (and if the process is not local, a
host name) to identify a particular AIX process. The analysis tool can then call
a member function to connect to the process.

� If the Process object is created with the default constructor, it will not have
values identifying an AIX process. The analysis tool can call a member function
to create a new process running. Alternatively, it can assign the host and
process ID information using an assignment operator and call a member
function to connect to the process.

Once connected to the process, member functions of this class enable the analysis
tool to:

� get a SourceObj class object that represents the source code structure
associated with this process. The SourceObj class is described in more detail in
“What is the SourceObj class?” on page 48.

� install, activate, and remove point probes

� add, remove, and set the phase interval for, phase probes

� execute a one-shot probe within the process

� allocate and deallocate memory within the process for use by the probes.

� load and unload probe modules so that they may be called by point, phase,
and one-shot probes.

For additional process control, an analysis tool can also attach to the process. By
attaching to the process, the analysis tool can control its execution. Specifically,
once attached to the process, the analysis tool can call member functions of the
Process class to:

� suspend and resume execution of the process.

� destroy (terminate) the process.

In order to manipulate processes, you must understand the concept of process
connect states. A Process object's connect state reflects the relationship between
the Process class object in the analysis tool and the actual AIX process it
represents. The various Process connect states are enumerated in the
ConnectState type; the Process::query_state function returns one of the
enumeration constants of the ConnectState type to indicate the Process object's
connect state.

A Process object's connect state reflects what actions can be performed on the
actual AIX process through DPCL function calls. For example, your analysis tool
cannot execute probes within a target application process unless the analysis tool
is "connected" or "attached" to that process. The "connected" state is represented

26 IBM PE for AIX V3R1.0: DPCL Programming Guide

by the enumeration constant PRC_connected of the ConnectState enumeration type,
and the "attached" state is represented by the constant PRC_attached. When the
analysis tool calls certain functions to act upon a process, the DPCL system checks
the Process object's connect state to determine if the action is allowed. If it is not
allowed, the operation fails.

Certain member functions of the Process class serve to move the Process object
from one state to another. For example, the analysis tool can establish a
communication connection to an AIX process by calling the Process::connect
function, or its blocking equivalent Process::bconnect. In addition to establishing
the communication connection that allows the analysis tool to install probes into the
target application process, these functions also move the Process object's connect
state from PRC_unconnected to PRC_connected.

As already mentioned, the analysis tool can query a Process object's connect state
by calling the Process::query_state function. This enables the analysis tool to
check a process' state before making a DPCL service request that may not be
allowed.

a

Process

PRC_destroyed

default Process constructor non-default Process constructor

assignment operation

create/bcreate

start/bstart

connect/bconnect

disconnect/bdisconnect

attach/battach

detach/bdetach

disconnect/bdisconnect

destroy/bdestroy

attach/battach

b

c

d
e

f

g

h

h

i

j

f

Process

PRC_unconnected

Process

PRC_connected

Process

PRC_attached

Process

PRC_created

Process

PRC_pre_create

destroy/bdestroyj

Figure 7. Process connect state diagram

 Chapter 2. What are the DPCL classes? 27

The preceding figure illustrates the various process connect states and shows the
enumeration constants of the ConnectState enumeration type. It also shows the
constructors, operations, and functions that place a Process object into a particular
connect state. For additional explanation of this figure, refer to the following key:

�a� If the analysis tool creates a Process class object using the default
constructor, the Process object's initial connect state is PRC_pre_create.
The PRC_pre_create connect state means that the Process object does
not yet represent a particular process. In other words, it does not yet
have values indicating a particular host name and process ID. The
analysis tool can either assign these values to the Process object (�c�),
or create a process (�d�)

�b� If the analysis tool creates a Process class object using the non-default
constructor, the Process object's initial connect state is PRC_unconnected.
The PRC_unconnected connect state means that, although the Process
object has values indicating a particular host name and process ID, it is
not yet connected to the process. In fact, the DPCL system does not at
this point even know if the Process object's host and process ID values
are valid. Now that it has a Process object that represents a particular
AIX process, however, the analysis tool can connect to it (�e�).

�c� Using an assignment operator, the analysis tool can move a Process
from the PRC_pre_create connect state to the PRC_unconnected connect
state. The assignment operation assigns values to the Process object
indicating a particular host name and process ID. The analysis tool can
then attempt to connect to the process indicated (�e�)

�d� Using the create or bcreate function, the analysis tool can move a
Process from the PRC_pre_create connect state to the PRC_created
connect state. The create and bcreate functions create an AIX process
on a particular host, but suspends execution of the process at its first
executable instruction. The analysis tool can start the process running
(�g�), attach to the process (�h�), or terminate the process (�j�).

�e� Using the connect or bconnect function, the analysis tool can move a
Process from the PRC_unconnected connect state to the PRC_connected
connect state. The connect and bconnect functions establish a
connection to the actual AIX process represented by the Process object.
In the PRC_connected state, the analysis tool is able to install and
execute probes within the target application process. For additional
process control (specifically, the ability to suspend, resume, and destroy
the process), the analysis tool can attach to the process (�h�).

�f� Using the disconnect or bdisconnect function, the analysis tool can
move a Process from the PRC_connected or PRC_attached connect state,
back to the PRC_unconnected connect state. Although the Process object
will have values indicating a particular host name and process ID, it will
no longer be connected to the process. The analysis tool can, if desired,
reconnect to the Process (�e�).

�g� Using the start or bstart function, the analysis tool can move a
Process from the PRC_created connect state to the PRC_connected
connect state. The start and bstart functions start execution of the
target application process. Once in the PRC_connected connect state,
the analysis tool is able to install and execute probes within the target
application process. For additional process control (specifically, the

28 IBM PE for AIX V3R1.0: DPCL Programming Guide

ability to suspend, resume, and destroy the process), the analysis tool
can attach to the process (�h�).

�h� Using the attach or battach function, the analysis tool can move a
Process from the PRC_created or PRC_connected connect state to the
PRC_attached connect state. In the PRC_attached connect state, the
analysis tool can install and execute probes within the target application
process (as in the PRC_connected connect state), and can also control
execution of the process. Moving to the PRC_attached connect state
automatically suspends execution of the process. This enables the
analysis tool to perform actions on the process (such as installing
probes) before resuming its execution. The analysis tool can resume
execution of the suspended process. Once resumed, the analysis tool
can again suspend the process' execution. The analysis tool can also
terminate (�j�) the process. Since only one analysis tool may be
attached to a particular process at a time, your analysis tool may wish to
detach itself from the process (�i�) when it is through controlling its
execution.

�i� Using the detach or bdetach function, the analysis tool can move a
Process from the PRC_attached connect state to the PRC_connected
connect state. The analysis tool will no longer be able to directly control
execution of the process, but in the PRC_connected connect state will still
be able to install and execute probes within the process.

�j� When the Process object is in the PRC_created or PRC_attached connect
state, the analysis tool can destroy (terminate) the process using the
destroy or bdestroy function. This places the Process object in the
PRC_destroyed state.

Table 3 on page 30 summarizes the various functions of the Process class. Since
many of the actions carried out by the functions can occur on remote hosts, note
that blocking and nonblocking versions of the same functionality are usually
provided. As described in “What are blocking and nonblocking API calls?” on
page 10, blocking calls do not return control to the analysis tool until they either
succeed or fail in carrying out the requisite service, while the nonblocking calls
return immediately, enabling the analysis tool to continue with other work. Since the
nonblocking calls return immediately, however, that returned status indicates only
whether or not the request was successfully made; it does not indicate whether or
not the request succeeded. For this reason, when calling a nonblocking function,
the analysis tool can specify an acknowledgment callback routine. Once the
operation succeeds or fails, the DPCL system will trigger execution of this callback
routine and pass it the status information in the form of an AisStatus object
(described in “What is the AisStatus class?” on page 58). An acknowledgment
callback not only enables the analysis tool to perform status error checking, but
also enables the analysis tool to be structured in a more event-driven manner. For
example, the acknowledgment callback for the Process::connect function could
check that the operation succeeded, and then could call the Process::attach
function to attach to the process. Similarly, the acknowledgment callback for the
Process::attach function could contain code for the next piece of work. While the
nonblocking calls enable you to structure your analysis tool program in this sort of
event driven manner, the blocking calls enable you to structure your analysis tool
program in a more traditional way that is more straightforward and, therefore, easier
to code.

 Chapter 2. What are the DPCL classes? 29

For complete information on any of the functions summarized in this table, refer to
the function's AIX man page or the IBM Parallel Environment for AIX: DPCL Class
Reference.

Table 3 (Page 1 of 3). Process class function summary

Calling the function: Does this: In order for the DPCL
system to carry out this
service request, the
Process object's connect
state must be:

activate_probe
bactivate_probe

activates one or more point probes that have been installed
(by the install_probe or binstall_probe function) within the
process. Activating a point probe will cause the probe to run
when execution reaches its installed location in the code.

PRC_created,
PRC_connected, or
PRC_attached

add_phase
badd_phase

Adds a new phase (the control mechanism for invoking phase
probes at set intervals) to the process.

PRC_connected or
PRC_attached

alloc_mem
balloc_mem

allocates memory within the process for use by probes. PRC_connected or
PRC_attached

attach
battach

Attaches to the process. This action changes the Process
object's connect state to PRC_attached. Attaching to a process
also suspends its execution in the same way that a call to the
suspend or bsuspend function would. This enables the analysis
tool to install probes in the process before resuming its
execution with a call to the resume or bresume function.

PRC_connected or
PRC_created

connect
bconnect

Connects to the process. This action changes the Process
object's connect state from PRC_unconnected to
PRC_connected.

PRC_unconnected

create
bcreate

creates a new process running on a specified host. This
action changes the Process object's connect state from
PRC_pre_create to PRC_created.

PRC_pre_create

deactivate_probe
bdeactivate_probe

Deactivates one or more point probes that have been
installed (by the install_probe or binstall_probe function)
and activated (by the activate_probe or bactivate_probe
function) within the process. Once deactivated, a probe will
no longer run when execution reaches its installed location in
the code.

PRC_created,
PRC_connected, or
PRC_attatched

destroy
bdestroy

Destroys (terminates) the process. This action changes the
Process object's connect state from PRC_created or
PRC_attached to PRC_destroyed.

PRC_created or
PRC_attached

detach
bdetach

detaches the analysis tool from the process. This action
changes the Process object's connect state from PRC_created
or PRC_attached to PRC_connected.

PRC_created or
PRC_attached

disconnect
bdisconnect

disconnects the analysis tool from the process. This action
changes the Process object's connect state to
PRC_unconnected.

PRC_connected or
PRC_attached

execute
bexecute

executes a one-shot probe within the process. PRC_created,
PRC_connected, or
PRC_attached

free_mem
bfree_mem

deallocates memory within the process previously allocated
by alloc_mem or balloc_mem.

PRC_created,
PRC_connected, or
PRC_attached

get_host_name copies into a buffer a null-terminated string that represents
the name of the host on which the process is running.

Not applicable. This is a
local operation within the
analysis tool process only.

get_host_name_length returns the name length, including the terminating null byte, of
the host machine on which the process is running. (Used to
determine the maximum size of the buffer when calling the
get_host_name function.)

Not applicable. This is a
local operation within the
analysis tool process only.

30 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 3 (Page 2 of 3). Process class function summary

Calling the function: Does this: In order for the DPCL
system to carry out this
service request, the
Process object's connect
state must be:

get_pid Returns the AIX process ID for the process. Not applicable. This is a
local operation within the
analysis tool process only.

get_phase_period returns the time duration, in seconds, between successive
activations of a particular phase in the process.

PRC_created,
PRC_connected, or
PRC_attached

get_program_object Returns the top-level source object associated with the
process.

PRC_created,
PRC_connected, or
PRC_attached

get_task Returns the task identifier associated with the process. Not applicable. This is a
local operation within the
analysis tool process only.

install_probe
binstall_probe

installs one or more probes as point probes within the
process. Once activated (by the activate_probe or
bactivate_probe function), a point probe will run when
execution reaches its installed location in the code.

PRC_created,
PRC_connected, or
PRC_attached

load_module
bload_module

Loads a probe module in the process. PRC_created, PRC_connected
or PRC_attached

operator = Assigns values to the Process object. Not applicable. This is a
local operation within the
analysis tool process only.

query_state Returns the connect state of the Process object. Not applicable. Queries the
Process object's connect
state.

remove_phase
bremove_phase

Removes a phase (the control mechanism for invoking phase
probes at set intervals) from the process. The phase will have
been previously added to the process by the add_phase or
badd_phase function.

PRC_created,
PRC_connected, or
PRC_attached

remove_probe
bremove_probe

Removes one or more point probes from the process. PRC_created,
PRC_connected, or
PRC_attached

resume
bresume

resumes execution of the process (if it has been previously
suspended by the suspend, bsuspend, attach, or battach
functions).

PRC_attached

send_stdin Provides text to be used as standard input to the process
(when the analysis tool has created the process using the
create or bcreate function).

PRC_created. This service
request can also be carried
out in the PRC_connected or
PRC_attached states as long
as the Process was once in
the PRC_created state (in
other words, created by the
create or bcreate function).

set_phase_exit
bset_phase_exit

Specifies a set of exit functions to be executed when a phase
is removed.

PRC_created,
PRC_connected, or
PRC_attached

set_phase_period
bset_phase_period

Changes the time interval between successive activations of
a particular phase.

PRC_created,
PRC_connected, or
PRC_attached

 Chapter 2. What are the DPCL classes? 31

Table 3 (Page 3 of 3). Process class function summary

Calling the function: Does this: In order for the DPCL
system to carry out this
service request, the
Process object's connect
state must be:

start
bstart

Starts a process that has been created using the create or
bcreate functions. Such a process will have been started, but
suspended at its first executable instruction. This action
changes the Process object's connect state from PRC_created
to PRC_connected.

PRC_created

suspend
bsuspend

Suspends execution of the process. The analysis tool can
resume execution of the process by calling the resume or
bresume function.

PRC_attached

unload_module
bunload_module

unloads a probe module from the process. PRC_created,
PRC_connected, or
PRC_attached

What is the Application class?
The Application class (defined in the header file Application.h) is a grouping of
related Process class objects. By grouping a number of Process objects under an
Application object, the analysis tool is able to manipulate a set of related AIX
processes (represented by the Process objects) as a single unit. For example, say
the target application is a parallel program that follows the Single Program Multiple
Data (SPMD) model. To connect to its processes, your analysis tool could make a
separate call to the Process::connect or Process::bconnect function for each
process. A more convenient approach, however, is to group the Process objects
under an Application object; the analysis tool can then connect to all the
processes managed by the Application object by making a single call to the
Application::connect or Application::bconnect function. The Application class
function makes the individual service requests for each process managed by the
Application object. The analysis tool uses the Application::add_process function
to group processes under the Application object.

32 IBM PE for AIX V3R1.0: DPCL Programming Guide

a

DPCL
Analysis

Tool
(user code)

Process0
Process1
Process2
Process3
Process4
Process5

Application0

Process0

DPCL
Analysis

Tool
(user code)

Analysis Tool
makes a single

Application::connect call

Application0

Process2
Process3
Process4
Process5

Process1

Dynamic
Probe
Class

Library

Process0

Process2
Process3
Process4
Process5

Process1

Analysis Tool
makes six separate

Process::connect calls

The Application::connect
call results in six separate

Process::connect calls

Figure 8. Process objects grouped under an Application object. In this figure, six Process
objects are grouped under an Application object. Here, the analysis tool is trying to connect
to the AIX processes represented by the Process objects. It can do this either by making a
separate Process::connect or Process::bconnect call for each process, or by making a
single call to Application::connect or Application::bconnect.

It is important to understand that an Application object can be any grouping of
Process objects, and not necessarily all the processes in a parallel application. It
may, for example, be only a subset of the parallel application's processes, or, in
fact, any set of AIX processes. What's more, a single Process object may be
grouped under several different Application objects. For example, say you have a
parallel program that follows the Multiple Program Multiple Data (MPMD) model and
solves a particular problem using functional parallelism. In this case, let's say that
three separate programs were created to perform specific work; at run time,
multiple processes for each executable program will run. For certain actions, it will
be convenient to have a single Application object that manages all of the target
application processes. This would enable the analysis tool to, using a single
function call, perform certain actions on all processes (such as connecting to,
suspending, resuming, terminating, or disconnecting from the processes). On the
other hand, because the analysis tool is dealing with a target application composed
from multiple programs, there are certain actions that it should not perform globally
on all processes. It would not, for example, make sense to install a point probe in
all the processes globally because a valid instrumentation point for some processes
would not be valid for others. In this case, your analysis tool might organize the
processes under four separate Application objects. One Application object could
contain all the Process objects and be used by global operations. Each of the other
three Application objects could contain just the Process objects associated with
one of the three source programs. Figure 9 on page 34 illustrates this situation; to
simplify the figure, only six processes are illustrated.

 Chapter 2. What are the DPCL classes? 33

a

DPCL
Analysis

Tool
(user code)

Process0
Process1
Process2
Process3
Process4
Process5

Application0

Application1

Application2

Application3

Application::install_probe

Application::connect

Application0

Application1

Dynamic
Probe
Class

Library

Process::connect
Process0

Process::connect
Process1

Process::connect
Process2

Process::connect
Process3

Process::connect
Process4

Process::connect
Process5

Process::install_probe
Process0

Process::install_probe
Process1

Dynamic
Probe
Class

Library

DPCL
Analysis

Tool
(user code)

Application::install_probe

Application2

Process::install_probe
Process2

Process::install_probe
Process3

Dynamic
Probe
Class

Library

DPCL
Analysis

Tool
(user code)

Application::install_probe

Application3

Process::install_probe
Process4

Process::install_probe
Process5

Dynamic
Probe
Class

Library

DPCL
Analysis

Tool
(user code)

Figure 9. Process objects grouped under multiple Application objects. In this figure, the Process objects are grouped
under four separate Application objects. This enables the analysis tool to call an Application class function to
manipulate all, or only a select subset, of the target application processes.

By comparing Table 3 on page 30 and Table 4 on page 36, you can clearly see
that most of the Process class functions have equivalent functions in the
Application class. The difference between a Process and an Application version
of a function is that the Application class version of the function carries out the
request for all of the processes managed by the Application object. Therefore,
member functions of the Application class enable the analysis tool to:

34 IBM PE for AIX V3R1.0: DPCL Programming Guide

� connect to, and disconnect from, the processes. When connected to the
processes, member functions of this class enable the analysis tool to:

– install, activate, and remove point probes within the processes.

– add, remove, and set the phase interval for, phase probes within the
processes.

– execute a one-shot probe within the processes.

– allocate and deallocate memory within the processes for use by the probes.

– load and unload probe modules so that their functions may be called by
point, phase, or one-shot probes.

� Attach to, or detach from, the processes. By attaching to the processes, the
analysis tool can control their execution. Specifically, once attached to the
processes, the analysis tool can call member functions of the Application
class to:

– suspend and resume execution of the processes

– destroy (terminate) the processes

Additional functions of the Application class enable the analysis tool to:

� add or remove a Process object from the set of processes managed by the
Application object.

� ascertain the number of processes (Process objects) currently managed by the
Application object.

� return a particular Process object from the set of those managed by the
Application object.

� return the status of the most recent Application function call for a particular
process managed by the Application object.

Table 4 on page 36 summarizes the various functions of the Application class.
Since many of the actions carried out by these functions can occur on remote
hosts, note that, as in the Process class, blocking and nonblocking versions of the
same functionality is usually provided. Also note that the majority of the
Application class functions carry out some service request for all of the Process
objects managed by the Application object, and the action requested may
succeed on certain processes while failing on others. This adds additional
complexity to error status checking. Specifically:

� The blocking functions will return only after the operation has succeeded or
failed for all processes managed by the Application object, but the status
(AisStatus object) returned will indicate only whether or not the operation
succeeded on all processes. If it did not, the analysis tool should use the
Application::status function to determine the process(es) on which the
operation failed.

� The nonblocking calls return immediately, but the returned status value
indicates only whether or not the requests were successfully made; it does not
indicate whether or not they succeeded. For this reason, when calling a
nonblocking function, the analysis tool can specify an acknowledgment callback
routine that will be called by the DPCL system upon the successful or
unsuccessful completion of the operation for each process managed by the
Application object. The DPCL system will call the acknowledgment callback
routine and pass it the status (AisStatus object) and a pointer to the Process

 Chapter 2. What are the DPCL classes? 35

object to which the status applies. Not only does this enable the analysis tool to
perform status error checking for each process, but it also enables the analysis
tool to be structured in a more event-driven manner. For example, the
acknowledgment callback for the Application::connect function could check
that the operation succeeded for each individual process in turn. If the
operation did succeed, the callback could then call the Process::attach
function to attach to the process.

The AisStatus object is described in “What is the AisStatus class?” on page 58.
Error checking considerations for Application functions are described in Chapter 4,
“Performing status error checking” on page 73.

For more information on the Process object connect state information shown in this
table, refer to Figure 7 on page 27. For complete information on any of the
functions summarized in this table, refer to the function's AIX man page or the IBM
Parallel Environment for AIX: DPCL Class Reference.

Table 4 (Page 1 of 3). Application class function summary

Calling the function: Does this: In order for the DPCL
system to carry out this
service request for a
particular process
managed by the
Application object, the
Process object's connect
state must be:

activate_probe
bactivate_probe

Within each process managed by this Application object,
activates one or more point probes that have been installed
(by the install_probe or binstall_probe function) within the
process. Activating a point probe will cause the probe to run
when execution reaches its installed location in the code.

PRC_created,
PRC_connected, or
PRC_attached

add_phase
badd_phase

For each process managed by this Application object, adds
a new phase (the control mechanism for invoking phase
probes at set intervals) to the process.

PRC_connected or
PRC_attached

add_process Adds a process (Process object) to the set of processes
managed by this Application object. The analysis tool can
later remove this process from the set of processes managed
by the application by calling the
Application::remove_process function.

Not applicable. This is a
local operation within the
analysis tool process only.

alloc_mem
balloc_mem

Within each process managed by this Application object,
allocates memory for use by probes.

PRC_connected or
PRC_attached

attach
battach

For each process managed by this Application object,
attaches the analysis tool to the process. This action changes
each Process object's connect state to PRC_attached.
Attaching to the processes managed by the Application
object also suspends their execution in the same way that a
call to the suspend or bsuspend function would. This enables
the analysis tool to install probes in the processes before
resuming their execution with a call to the resume or bresume
function.

PRC_connected or
PRC_attached

connect
bconnect

For each process managed by this Application object,
connects the analysis tool to the process. This action
changes each Process object's connect state from
PRC_unconnected to PRC_connected.

PRC_unconnected

36 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 4 (Page 2 of 3). Application class function summary

Calling the function: Does this: In order for the DPCL
system to carry out this
service request for a
particular process
managed by the
Application object, the
Process object's connect
state must be:

deactivate_probe
bdeactivate_probe

For each process managed by this Application object,
deactivates one or more point probes that have been installed
(by the install_probe or binstall_probe function) and
activated (by the activate_probe or bactivate_probe
function) within the process. Once deactivated, a probe will
no longer run when execution reaches its installed location in
the code.

PRC_created,
PRC_connected, or
PRC_attached

destroy
bdestroy

For each process managed by this Application object,
destroys (terminates) the process. This action changes each
Process object's connect state from PRC_created or
PRC_attached to PRC_destroyed.

PRC_created or
PRC_attached

detach
bdetach

For each process managed by this Application object,
detaches the analysis tool from the process. This action
changes each Process object's connect state from
PRC_created or PRC_attached to PRC_connected.

PRC_created or
PRC_attached

disconnect
bdisconnect

For each process object managed by this Application object,
disconnects the analysis tool from the process. This action
changes each Process object's connect state to
PRC_unconnected.

PRC_connected or
PRC_attached

execute
bexecute

For each process managed by this application object,
executes a one-shot probe within the process.

PRC_created,
PRC_connected, or
PRC_attached

free_mem
bfree_mem

For each process managed by this application object,
deallocates memory within the process previously allocated
by the alloc_mem or balloc_mem function.

PRC_created,
PRC_connected, or
PRC_attached

get_count Returns the number of processes (Process objects) currently
managed by this application object.

Not applicable. This is a
local operation within the
analysis tool process only.

get_process Returns a particular Process object from the set of those
managed by this Application object. This enables the
analysis tool to act upon the individual process independent
of the other processes managed by this Application object.

Not applicable. This is a
local operation within the
analysis tool process only.

install_probe
binstall_probe

For each process managed by this Application object,
installs one or more probes as point probes within the
process. Once activated (by the activate_probe or
bactivate_probe function), a point probe will run when
execution reaches its installed location in the code.

PRC_created,
PRC_connected, or
PRC_attached

load_module
bload_module

For each process managed by this Application object, loads
a probe module in the process.

PRC_created,
PRC_connected, or
PRC_attached

operator = Assigns values to the Application object. Not applicable. This is a
local operation within the
analysis tool process only.

remove_phase
bremove_phase

For each process managed by this Application object,
removes a phase (the control mechanism for invoking phase
probes at set intervals) from the process. The phase will have
been previously added to the application's processes by the
add_phase or badd_phase functions.

PRC_created,
PRC_connected, or
PRC_attached

 Chapter 2. What are the DPCL classes? 37

Table 4 (Page 3 of 3). Application class function summary

Calling the function: Does this: In order for the DPCL
system to carry out this
service request for a
particular process
managed by the
Application object, the
Process object's connect
state must be:

remove_probe
bremove_probe

For each process managed by this Application object,
removes one or more point probes from the process.

PRC_created,
PRC_connected, or
PRC_attached

remove_process Removes a particular process (Process object) from the set of
those managed by this Application object.

Not applicable. This is a
local operation within the
analysis tool process only.

resume
bresume

For each process managed by this Application object,
resumes execution of the process (if it has been suspended
by the suspend, bsuspend, attach, or battach functions).

PRC_attached

send_stdin For each process managed by this Application object,
provides text to be used as standard input to the process
(when the analysis tool has created the process using the
Process::create or Process::bcreate function).

PRC_created. This service
request can also be carried
out in the PRC_connected or
PRC_attached connect state
as long as the Process
objects managed by this
Application object were
once in the PRC_created
connect state (in other
words, created by the
create or bcreate function).

set_phase_exit
bset_phase_exit

For each process managed by this Application object,
specifies a set of exit functions to be executed when a phase
is removed.

PRC_created,
PRC_connected, or
PRC_attached

set_phase_period
bset_phase_period

For each process managed by this Application object,
changes the time interval between successive activations of a
particular phase.

PRC_created,
PRC_connected, or
PRC_attached

start
bstart

For each process managed by this Application object, starts
the process (which will have been created using the
Process::create or Process::bcreate function). Such a
process will have been started, but suspended at its first
executable instruction. This action changes each Process
object's connect state from PRC_created to PRC_connected.

PRC_created

status Returns, for a particular Process object managed by this
Application object, the status (AisStatus object) for the most
recent Application function call. If an Application function
call does not succeed for all processes managed by the
Application object, this enables the analysis tool to check
the status of each Process object individually.

Not applicable. This function
is designed for error status
checking and is not related
to process connect states.

suspend
bsuspend

For each process managed by this Application object,
suspends execution of the process. The analysis tool can
resume execution of the processes by calling the resume or
bresume function.

PRC_attached

unload_module
bunload_module

For each process managed by this Application object,
unloads a probe module from the process.

PRC_created,
PRC_connected, or
PRC_attached

38 IBM PE for AIX V3R1.0: DPCL Programming Guide

What is the PoeAppl class?
The PoeAppl class (defined in the header file PoeAppl.h) is derived from the
Application class; its purpose is to provide additional convenience functions for
connecting to or starting a job in the Parallel Operation Environment (POE). POE
(which is fully described in the manual IBM Parallel Environment for AIX: Operation
and Use, Volume 1) is an execution environment designed to hide, or at least
smooth, the differences between serial and parallel execution. In POE, you execute
a program from a "home node" (which can be any workstation on the LAN), and
POE will, sometimes in conjunction with IBM LoadLeveler, allocate host machines
on which the various processes of your POE job will run. A number of POE
environment variables enable you to control such things as how the system
resources are allocated and how standard I/O between the home node and the
processes of your program should be handled.

Table 5 summarizes the various functions of the PoeAppl class. As already stated,
the purpose of this class is simply to provide additional convenience functions for
either connecting to or starting a POE job. Since this class is derived from the
Application class, all of the Application class functions are available to objects of
the PoeAppl class. For complete information on any of the functions summarized in
the table, refer to the function's AIX man page or the IBM Parallel Environment for
AIX: DPCL Class Reference.

Table 5. PoeAppl class function summary

Calling the function: Does this:

create
bcreate

Creates a POE application in a suspended state. Arguments to these functions enable
you to specify the POE home node, arguments for the poe command or the target
application, environment variable settings that effect the POE execution environment,
and files for remote stdin, stdout, and stderr. After this operation completes, the PoeAppl
object will contain Process objects that represent the various processes of the POE
application. Since this function creates the POE application in a suspended state, each
process will have been suspended at its first executable instruction (as represented by
the PRC_connected state). To start the processes running, the analysis tool can call the
Application::start or Application::bstart function. To manipulate any of the
processes on an individual basis (using Process class functions), the analysis tool can
call the Application::get_process function to return a particular Process object.

init_procs
binit_procs

Initializes an empty PoeAppl object to contain Process objects representing a particular
POE target application's processes. To connect to these running processes, the analysis
tool can call the Application::connect or Application::bconnect function.

send_stdin Provides text to be used as input to the POE home node process for the stdin device
(file descriptor 0). To use this function, the POE application must have been created
using the PoeAppl::create or PoeAppl::bcreate function.

What are the ProbeExp, ProbeHandle, and ProbeModule classes?
This section describes the three classes that an analysis tool can use to represent,
and act upon, probes. These are:

� the ProbeExp class, described in “What is the ProbeExp class?” on page 40,
and used to represent probe expressions to be executed within one or more
target application processes.

� the ProbeHandle class, described in “What is the ProbeHandle class?” on
page 46, and used to represent identifying handles to installed point probes.
When the analysis tool calls one of the DPCL functions that install one or more

 Chapter 2. What are the DPCL classes? 39

probe expressions (ProbeExp objects) as point probes, the function called will
return an array of ProbeHandle objects that identify the point probes.

� the ProbeModule class, described in “What is the ProbeModule class?” on
page 47, and used to represent probe modules (compiled object files
containing one or more functions written in C).

What is the ProbeExp class?
The ProbeExp class (defined in the header file ProbeExp.h) is used to represent
probe expressions to be executed within one or more target application processes.
As described in “What is a probe expression?” on page 15, probe expressions are
"abstract syntax trees" — data structures that represent logic removed from any
particular syntactic representation. The term "abstract syntax tree" is one we have
borrowed from compiler technology. Compilers create abstract syntax trees from a
program's source code as an intermediary stage before manipulating and
converting them into executable instructions. The DPCL system needs to create
these abstract syntax tree data structures for the same reason that compilers do —
freed from a particular syntactic representation, they can be more easily converted
into executable instructions. This is because a compiler (or, in this case, the DPCL
system) only has to translate the abstract logic into executable instructions, and
does not need to parse a particular language.

A probe expression could be a simple one that represents, for example, a
persistent data value or a variable data value. In this case, the abstract syntax tree
would be a very simple one consisting of a single node. These simple probe
expressions, however, could be combined into more complex ones representing
such things as operations, conditional statements, sequences of expressions, and
function calls. For example, Figure 10 illustrates how an analysis tool could create
the abstract syntax tree to represent the expression a + (b * c).

a

+

b c

*a

b c

*a

b c

2 31

Figure 10. Building an abstract syntax tree. This figure builds an abstract syntax tree to
represent the expression a + (b * c). First, in �1�, three separate probe expressions are
created to represent the variable values a, b, and c. These will be the abstract syntax tree's
end, or "terminal" nodes. Next, in �2�, the probe expressions representing the variables b
and c are combined into a single probe expression representing the multiplication operation
b * c. Finally, in �3�, the probe expression representing the variable x is combined with the
probe expression representing the multiplication operation to form the probe expression
representing the operation a + (b * c). Figure 11 on page 41 expands on this abstract
syntax tree to create a probe expression representing conditional logic.

The following figure builds further on the abstract syntax tree created in Figure 10
to form a more complex abstract syntax tree to represent the conditional
expression:

if (x == a + (b 0 c))
 my_function();

40 IBM PE for AIX V3R1.0: DPCL Programming Guide

4

+

b c

*

==

a

x

call

my_function()

+

b c

*a

x +

b c

*

==

a

x +

b c

*

==

a

x my_function()

+

b c

*

==

a

x

call

my_function()

if, then

5 6

7 8

Figure 11. Building a more complex abstract syntax tree. This figure builds on the probe
expression created in Figure 10 to create a more complex probe expression representing a
conditional expression in which a function is called if the condition tests true. First, in �4� and
�5�, the existing probe expression is expanded to form the test condition x == a + (b * c).
Then, in �6� and �7�, the probe expression representing the function call is built. Finally, in
�8�, these two separate probe expressions are combined to form a probe expression
representing the conditional statement.

The member functions of the ProbeExp class are divided into two types — those
that the analysis tool can use to create probe expressions and so build abstract
syntax trees, and those that the analysis tool can use to query and return values
from probe expressions, and so navigate an abstract syntax tree. In addition to the
member functions of the ProbeExp class, certain functions of other DPCL classes
(such as the Process::alloc_mem, ProbeHandle::get_expression, and
ProbeModule::get_reference functions) also return probe expressions.

First, let's discuss how an analysis tool goes about creating probe expressions and
building the abstract syntax tree. The simplest probe expressions are those that
consist of a single abstract syntax tree node. These, if combined into a larger
probe expression, are referred to as "terminal nodes" because they have no child
probe expression. In DPCL, terminal nodes can represent a persistent data value, a
variable data value, or a reference to a function.

The analysis tool can
create a probe expression
representing a:

By:

persistent data value � using the ProbeExp class constructors

variable data value � calling the Process::alloc_mem, Process::balloc_mem, Application::alloc_mem, or
Application::balloc_mem function to allocate memory for the variable in the target
application process(es).

� calling the SourceObj::reference function to get a reference to a program variable.

� calling the ProbeType::get_actual function to get the actual value of a function parameter
in the target application.

 Chapter 2. What are the DPCL classes? 41

The analysis tool can
create a probe expression
representing a:

By:

reference to a function � calling the ProbeModule::get_reference function to get a reference to a probe module
function.

� calling the SourceObj::reference function to get a reference to a function in the target
application.

� using the predefined probe expression Ais_send (which references a function the analysis
tool can use to send information from an installed probe back to the analysis tool.)

These simple probe expressions do not need to be combined into more complex
ones. (Even a probe expression representing a reference to a probe module
function does not need to be combined into a probe expression representing a
function call since it can be specified as a phase probe when instantiating a Phase
class object.) As already stated, however, these simple probe expressions can be
combined into more complex ones. These more complex probe expressions can
represent an operation, a function call, a sequence of instructions, and conditional
logic.

The analysis tool can
create a probe expression
to represent:

By:

an operation Using any of the regular operators (such as +, *, !=, and so on) which have been overloaded
so that, within the context of a probe expression, they do not execute locally, but instead
create a probe expression representing the operation. Since the assignment (=) and address
(&) operators could not be easily overloaded, the ProbeExp class provides explicit member
functions (ProbeExp::assign and ProbeExp::address) to perform these operations.

a function call calling the ProbeExp::call function.

a sequence of instructions calling the ProbeExp::sequence function.

conditional logic calling the ProbeExp::ifelse function.

Now let's discuss the ProbeExp class functions that enable the analysis tool to
query and return information from probe expressions. In order to understand these
functions, you should understand how DPCL represents operations, function calls,
instruction sequences, and conditional logic as abstract syntax trees. The following
figures illustrate these abstract syntax trees. In these figures, note that, for each
node in the tree, the node type is shown. A probe expression's node type (as
represented by one of the enumeration constants of the CodeExpNodeType
enumeration type) represents the various operators and operands that may be
found in a probe expression. For example, the enumeration constant CEN_mult_op
indicates that the probe expression node represents a multiplication operation, and
the enumeration constant CEN_call_op indicates that the probe expression node
represents a function call. An analysis tool can ascertain a probe expression node
type by calling the ProbeExp::get_node_type function.

Figure 12 on page 43 shows probe expression abstract syntax trees representing
the operations 8 0 2 and 18 + (8 0 2).

42 IBM PE for AIX V3R1.0: DPCL Programming Guide

CEN_mult_op
(multiplication)

*

CEN_int32_value
8

(integer value)

CEN_int32_value
2

(integer value)

CEN_mult_op
(multiplication)

*

CEN_int32_value
8

(integer value)

CEN_int32_value
2

(integer value)

CEN_int32_value
10

(integer value)

CEN_add_op
(addition)

+

Figure 12. Probe expression abstract syntax trees representing operations

Figure 13 shows probe expression abstract syntax trees representing the function
calls my_function(x); and my_function(x, y, z);. Note that the function call
node (CEN_call_op) cannot have more than two children. When there are more than
two function call arguments, the CEN_list_item nodes are used to organize them
into a deeper tree.

CEN_call_op
(function call)

CEN_function_ref
my_function()

(reference to function)

CEN_int32_value
x

(function argument)

CEN_call_op
(function call)

CEN_function_ref
my_function()

(reference to function)

CEN_list_item

CEN_int32_value
x

(function argument)

CEN_list_item

CEN_list_item

CEN_int32_value
y

(function argument)

CEN_int32_value
z

(function argument)

Figure 13. Probe expression abstract syntax trees representing function calls

Figure 14 on page 44 shows a probe expression abstract syntax tree that
represents the instruction sequence x++; my_function(x);.

 Chapter 2. What are the DPCL classes? 43

CEN_call_op
(function call)

CEN_function_ref
my_function()

(reference to function)

CEN_heap_ref
x

(function argument)

CEN_stmt_list
(sequence of statements)

CEN_postfix_plus_op
(postfix increment)

CEN_heap_ref
x

Figure 14. Probe expression abstract syntax tree representing an instruction sequence

Figure 15 shows probe expression abstract syntax trees that represent the
conditional statements if (x != 4) my_function(x); and if (x != 4)
my_function(x); else my_other_function();. Note that both the "if..." and if...
else" conditional statements are created using the same function call —
ProbeExp::ifelse. Note also that the "if... else" statement node (CEN_if_else_stmt)
is the only node type that has three children.

CEN_call_op
(function call)

CEN_function_ref
my_other_function()

(reference to function)

CEN_heap_ref
x

(function argument)

CEN_if_else_stmt
(if else statement)

CEN_ne_op
(not equal)

!=

CEN_heap_ref
x

CEN_int32_value
4

CEN_call_op
(function call)

CEN_function_ref
my_function()

(reference to function)

CEN_int32_value
x

(function argument)

CEN_if_stmt
(if statement)

CEN_ne_op
(not equal)

!=

CEN_heap_ref
x

CEN_int32_value
4

CEN_call_op
(function call)

CEN_function_ref
my_function()

(reference to function)

Figure 15. Probe expression abstract syntax trees representing conditional statements

To navigate and query a probe expression abstract syntax tree, the analysis tool
uses member functions of the ProbeExp class designed for this purpose. The
analysis tool can determine:

� the probe expression node's type (using the ProbeExp::get_node_type
function).

� whether or not the probe expression's node has children (using the
ProbeExp::has_children function), and, if so, how many (using the

44 IBM PE for AIX V3R1.0: DPCL Programming Guide

ProbeExp::has_left, ProbeExp::has_right, and ProbeExp::has_center
functions). If it does have any of these children, the analysis tool can get the
actual probe expression for any one of them (using the ProbeExp::value_left,
ProbeExp::value_right, and ProbeExp::value_center functions). By getting a
child probe expression, the analysis tool essentially navigates down into the
tree, and can now query and return values for the child probe expression's
node.

� whether or not the probe expression node represents a datum of a particular
type (for example, ProbeExp::has_int, ProbeExp::has_uint, and so on). If the
probe expression does have such a value, the analysis tool can use other
functions (for example ProbeExp::value_int, ProbeExp::value_uint, and so
on) to get the value contained within the probe expression.

Table 6 summarizes the various functions of the ProbeExp class. For complete
information on any of the functions summarized in the table, refer to the function's
AIX man page or the IBM Parallel Environment for AIX: DPCL Class Reference.

Table 6 (Page 1 of 2). ProbeExp class function summary

Calling the function: Does this:

address Creates a probe expression that represents the referencing of another probe expression.
This function is provided because the & operator could not be easily overloaded since it
is used in passing arguments to functions that use call-by-reference.

assign Creates a probe expression that represents the assignment of a value represented by
one probe expression into a storage location represented by another probe expression.
This function is provided because the = operator could not be easily overloaded without
causing simple expression manipulation to become unwieldy.

call Creates a probe expression that represents a function call.

get_data_type Returns the data type (ProbeType object) of this probe expression. (For more information
on ProbeType objects, refer to “What is the ProbeType class?” on page 55.)

get_node_type Returns the type of node at the root of this probe expression's abstract syntax tree.

has_int8
has_int16
has_int32
has_int64
has_int
has_uint8
has_uint16
has_uint32
has_uint64
has_uint

Returns a Boolean value indicating whether or not this probe expression represents a
datum with the data type in question.

has_string Returns a Boolean value indicating whether or not the probe expression has a string
data type.

has_children
has_left
has_right
has_center

Returns a Boolean value indicating whether or not the probe expression's node has child
probe expression nodes (has_children), has a left-hand child node (has_left), has a
right-hand child node (has_right), or has a center node (has_center).

ifelse Creates a probe expression that represents a conditional statement.

is_same_as Compares two probe expressions for equivalence.

 Chapter 2. What are the DPCL classes? 45

Table 6 (Page 2 of 2). ProbeExp class function summary

Calling the function: Does this:

operator + (binary or unary)
operator +=
operator - (binary or unary)
operator -=
operator 0 (binary or unary)
operator 0=
operator /
operator /=
operator %
operator %=
operator ==
operator !
operator !=
operator <
operator <=
operator <<
operator <<=
operator >
operator >=
operator >>
operator >>=
operator & (binary or unary)
operator &=
operator &&
operator |
operator |=
operator ||
operator ^
operator ^=
operator ˜
operator []

Creates probe expressions to represent particular operations. These common operators
have been overloaded so that, when used within the context of the ProbeExp class, they
do not execute locally but instead create a probe expression that represent the
operation.

Note: Not all of these operator functions are compatible with all operator types. Refer
to the IBM Parallel Environment for AIX: DPCL Class Reference for information
on which types are valid for each overloaded operator function.

operator = Assigns values to the ProbeExp object.

sequence Creates a probe expression that represents the sequence of two probe expressions.

value_int8
value_int16
value_int32
value_int64
value_uint8
value_uint16
value_uint32
value_uint64

Returns the value, of the indicated type, contained within this probe expression.

value_left
value_right
value_center

Returns the value contained within a child probe expression of the calling probe
expression.

value_text Copies, into a specified buffer, a string representing the value contained within this
probe expression node.

value_text_length Returns the length of the text string contained within this probe expression node. This
enables the analysis tool to determine the size of the buffer into which the value_text
function will copy the text string.

What is the ProbeHandle class?
Objects of the ProbeHandle class (which is defined in the header file ProbeHandle.h)
represent identifying handles to installed point probes. When the analysis tool
installs one or more probes as point probes (using the Process::install_probe,
Process::binstall_probe, Application::install_probe, or
Application::binstall_probe function), the function called will return an output
array containing ProbeHandle objects representing each of the installed point
probes. Using these probe handles, the analysis tool can make subsequent DPCL

46 IBM PE for AIX V3R1.0: DPCL Programming Guide

function calls to manipulate the installed point probes. Specifically, the analysis tool
can:

� call the Process::activate, Process::bactivate, Application::activate, or
Application::bactivate function to activate one or more installed point probes.
An activated point probe will run when execution reaches its installed location
in the code.

� call the Process::deactivate, Process::bdeactivate,
Application::deactivate, or Applicaion::bdeactivate function to deactivate
one or more installed point probes. A deactivated point probe will not execute.

� call the Process::remove_probe, Process::bremove_probe,
Application::remove_probe, or Application::bremove_probe function to
remove one or more installed point probes.

The following table summarizes the various functions of the ProbeHandle class. For
complete information on any of these functions, refer to the function's AIX man
page or the IBM Parallel Environment for AIX: DPCL Class Reference.

Table 7. ProbeHandle class function summary

Calling the function: Does this:

get_expression Returns a copy of the probe expression (ProbeExp object) for the point probe
represented by this ProbeHandle object. Using member functions of the ProbeExp object
(described in “What is the ProbeExp class?” on page 40), the analysis tool can navigate
this probe expression's abstract syntax tree to get information about the probe
expression.

get_point Returns the instrumentation point (InstPoint object) at which the point probe
represented by this ProbeHandle object was installed. Using member functions of the
InstPoint object (described in “What is the InstPoint class?” on page 52), the analysis
tool can get information about the instrumentation point at which the point probe has
been installed.

operator = Assigns values to the ProbeHandle object.

What is the ProbeModule class?
Objects of the ProbeModule class (which is defined in the header file ProbeModule.h)
represent probe modules that the analysis tool can load into one or more target
application processes using the Process::load_module, Process::bload_module,
Application::load_module, or Application::bload_module function. A probe
module is a compiled object file containing one or more functions written in C. Once
a probe module is loaded into a target application process, its functions are
available to the analysis tool as if they were native to the target application.

To invoke a probe module function, the analysis tool can first get a reference to the
function by calling the ProbeModule::get_reference function. This returns a probe
expression (ProbeExp object) that represents a reference to the probe module
function. This simple probe expression can be specified as a phase probe when
instantiating or assigning values to a Phase class object (described in “What is the
Phase class?” on page 57), or it can be combined (using the ProbeExp::call
function) into a probe expression representing a function call. The probe expression
representing a function call can then be installed as a point probe (using the
Process::install_probe, Process::binstall_probe, Application::install_probe,
or Application::binstall_probe) or executed as a one-shot probe (using the

 Chapter 2. What are the DPCL classes? 47

Process::execute, Process::bexecute, Application::execute, or
Application::bexecute function).

The following table summarizes the various functions of the ProbeModule class. For
complete information on any of these functions, refer to the function's AIX man
page or the IBM Parallel Environment for AIX: DPCL Class Reference.

Table 8. ProbeModule class function summary

Calling the function: Does this:

get_count Returns the number of functions contained in this probe module.

get_name Copies, into a specified buffer, the name of a particular function (as identified by a
supplied index) in the module.

get_name_length Returns the length of the mangled name of a particular function in the module. This
enables the analysis tool to determine the size of the buffer into which the get_name
function will copy the function name.

operator = Assigns values to the ProbeModule object.

operator ==
operator !=

Compares two ProbeModule objects for equivalence.

get_reference Returns a probe expression (ProbeExp object) that represents a reference to a particular
function within this probe module. The analysis tool can then use this probe expression
in forming a more complex probe expression. In particular, the analysis tool can call the
ProbeExp::call function to create a probe expression that represents a call to the
particular probe module function.

What are the SourceObj and InstPoint classes?
This section describes two classes that the analysis tool can use to examine the
source code associated with a target application process and identify locations,
called "instrumentation points", where point probes can be installed. These are the
SourceObj class (described in “What is the SourceObj class?” and used to
represent the source code structure of a target application process) and InstPoint
class (described in “What is the InstPoint class?” on page 52 and used to
represent instrumentation points).

What is the SourceObj class?
Objects of the SourceObj class (which is defined in the header file SourceObj.h) are
called "source objects" and are used by the DPCL system to represent the source
code structure associated with a target application process (Process object). The
source code structure associated with a process is represented as a hierarchical
tree of SourceObj objects — with each SourceObj object in the tree representing a
particular type of source object — a program-level source object, a module-level
source object, a function-level source object, or a data-level source object. The
analysis tool can navigate and query this hierarchy of source objects to:

� display source code information to the analysis tool user.

� get a probe expression (ProbeExp object) that represents a reference to a
program function or variable.

� identify an instrumentation point at which it can install point probes.

To get the top, program-level, source object associated with a process, the analysis
tool calls the Process::get_program_object function. Since applications may be
very large and the analysis tool (or the analysis tool user) may be interested only in

48 IBM PE for AIX V3R1.0: DPCL Programming Guide

a particular module (compilation unit) within the program, the hierarchy of
SourceObj objects under the initial program-level source object does not represent
the full source code structure. Instead, for performance reasons, the hierarchy of
SourceObj objects reaches down only as far as the module level. The module-level
source objects are children of the program-level source object. By calling the
SourceObj::child function for the program-level source object, the analysis tool can
get any of its child (module-level) source objects, and so navigate one level down
the source code hierarchy. To navigate further down into the source hierarchy to
examine additional program structure, the analysis tool can then call the
SourceObj::expand or SourceObj::bexpand function for the module-level source
object. The SourceObj::expand or SourceObj::bexpand functions expand the tree to
include the low-level source objects.

The following figure illustrates how an analysis tool can obtain a program-level
source object and expand one of its module level source objects so that the source
object hierarchy then contains SourceObj object nodes for functions and global data
variables. This figure shows the enumeration constants of the SourceType
enumeration type. These enumeration constants are returned by the
SourceObj::src_type function and identify the particular SourceObj node in the
source hierarchy as either a program-level, module-level, function-level, or
data-level source object.

 Chapter 2. What are the DPCL classes? 49

SOT_program
a.out

(program-level source object)

SOT_module
main.f

(module-level
source object)

SOT_module
read_data.f

(module-level
source object)

SOT_module
write_data.f

(module-level
source object)

SOT_module
main.f

(module-level
source object)

SOT_function
setup()

(function-level
source object)

SOT_function
compute()

(function-level
source object)

SOT_function
check_values()
(function-level
source object)

SOT_module
main.f

(module-level
source object)

SOT_data
x

(data-level
source object)

SOT_data
y

(data-level
source object)

1

Process::get_program_object

2

SourceObj::child

3

SourceObj::expand

Figure 16. Navigating and expanding a source hierarchy. First, in �1�, the analysis tool
calls the Process::get_program_object function to get the initial source hierarchy down to
the module level. Then, in �2�, the analysis tool calls the SourceObj::child function to
navigate down one level in the source hierarchy. Then, in �3�, the analysis tool calls the
SourceObj::expand function to expand the particular module's hierarchy of function-level and
data-level source objects.

Once the source hierarchy has been expanded below a particular module-level
source object, the analysis tool can navigate further down the hierarchy to obtain
information about the module's functions and global data variables. In particular, if
the source object is a function-level or data-level source object, the analysis tool
can call the SourceObj::reference function to get a probe expression that
represents a reference to that function or global data variable. Note that the
SourceObj object representing a global data variable will only be found under the
SourceObj object representing the module where the global data variable was
defined.

The analysis tool can also identify instrumentation points (by calling the
SourceObj::inclusive_point or SourceObj::exclusive_point functions) at which it
can install probe expressions as point probes. These functions are described in
greater detail next in “What is the InstPoint class?” on page 52.

50 IBM PE for AIX V3R1.0: DPCL Programming Guide

The following table summarizes the various functions of the SourceObj class. For
complete information on any of these functions, refer to the function's AIX man
page or the IBM Parallel Environment for AIX: DPCL Class Reference.

Table 9 (Page 1 of 2). SourceObj class function summary

Calling the function: Does this:

address_end Returns the address of the last element associated with this source object.

address_start Returns the address of the first element associated with this source object.

child Returns a particular child source object of this source object.

child_count Returns the number of child source objects for this source object.

exclusive_point Returns a particular instrumentation point (InstPoint object) within this source object.

exclusive_point_count Returns the number of instrumentation points (InstPoint objects) within this source
object.

expand
bexpand

Expands an unexpanded module. Expanding a module enables the analysis tool to
navigate further down into the source hierarchy, examining additional program structure
(such as data, functions, and instrumentation points) in the module.

get_data_type When the source object represents a variable, returns a ProbeType object representing
the data type of the variable.

get_demangled_name When the source object represents a function, copies, into a specified buffer, the
demangled name of that function.

get_demangled_name_length When the source object represents a function, returns the length of the demangled
name of the function. This enables the analysis tool to determine the size of the buffer
into which the get_demangled_name function will copy the demangled function name.

get_mangled_name When the source object represents a function, copies, into a specified buffer, the
mangled name of that function.

get_mangled_name_length When the source object represents a function, returns the length of the mangled name
of the function. This enables the analysis tool to determine the size of the buffer into
which the get_mangled_name function will copy the mangled function name.

get_program_type Indicates whether the program is using the 32-bit or 64-bit address memory model. This
function indicates this information by returning one of the enumeration constants
(SOL_lp32 or SOL_lp64) of the LpModel enumeration type.

get_variable_name When the source object represents a data variable, copies, into a specified buffer, the
variable name.

get_variable_name_length When the source object represents a data variable, returns the length of the variable
name. This enables the analysis tool to determine the size of the buffer into which the
get_variable_name function will copy the variable name.

inclusive_point Returns a particular instrumentation point (InstPoint object) within this source object or
any of its child source objects.

inclusive_point_count Returns the number of instrumentation points (InstPoint objects) within this source
object and all of its child source objects.

line_end Returns the approximate source line number of the last line in this source object.

line_start Returns the approximate source line number of the first line in this source object.

module_name Copies, into a specified buffer, the file name and path of the module that contains this
source object.

module_name_length Returns the length of the file name and path of the module that contains this source
object. This enables the analysis tool to determine the size of the buffer into which the
module_name function will copy the module's file name and path.

obj_parent Returns the parent source object for this source object.

operator = Assigns values to the SourceObj object.

operator ==
operator !=

compares two SourceObj objects for equivalence.

program_name When the source object represents a program, copies, into a specified buffer, the file
name and path of the executable program.

 Chapter 2. What are the DPCL classes? 51

Table 9 (Page 2 of 2). SourceObj class function summary

Calling the function: Does this:

program_name_length When the source object represents a program, returns the length of the file name and
path of the executable program. This enables the analysis tool to determine the size of
the buffer into which the program_name function will copy the executable program's file
name and path.

reference When the source object represents a program function or variable, creates a probe
expression (ProbeExp object) that represents a reference to that function or variable. The
analysis tool can then use these probe expressions in forming more complex probe
expressions. A probe expression representing a function can be combined by the
analysis tool into a probe expression representing a function call. A probe expression
representing a variable can be used by the analysis tool in creating a probe expression
that modifies or otherwise uses that variable.

src_type Returns the source object type of this source object. This function indicates this
information by returning one of the enumeration constants of the SourceType
enumeration type.

What is the InstPoint class?
Objects of the InstPoint class (which is defined in the header file InstPoint.h)
represent instrumentation points — locations within the target process(es) where
the analysis tool can install point probes by calling the Process::install_probe,
Process::binstall_probe, Application::install_probe, or
Application::binstall_probe functions. All four of these functions must, for each
probe expression being installed as a point probe, be passed an InstPoint object
that indicates where the probe should be installed. To get an InstPoint object, the
analysis tool calls the SourceObj::exclusive_point or SourceObj::inclusive_point
function. (Note that in order for these functions to return an InstPoint object, at
least one of the module-level source objects in the source object hierarchy must
have been expanded by the SourceObj::expand or SourceObj::bexpand function.)
To determine the number of instrumentation points under a particular source object,
the analysis tool can call the SourceObj::exclusive_point_count or
SourceObj::inclusive_point_count function. The
SourceObj::exclusive_point_count function returns the number of InstPoint
objects associated with the particular source object, while the
SourceObj::inclusive_point_count function returns the number of InstPoint
objects associated with a particular source object and all of its child source objects.

Figure 17 on page 53 illustrates the difference between exclusive and inclusive
point counts.

52 IBM PE for AIX V3R1.0: DPCL Programming Guide

SOT_program
a.out

(program-level source object)

SOT_module
main.f

(expanded
module-level

source object)

SOT_module
read_data.f

(unexpanded
module-level

source object)

SOT_module
write_data.f
(unexpanded
module-level

source object)

SOT_function
setup()

(function-level
source object)

SOT_function
compute()

(function-level
source object)

SOT_function
check_values()
(function-level
source object)

exclusive points = 0
inclusive points = 6

exclusive points = 0
inclusive points = 0

exclusive points = 0
inclusive points = 6

exclusive points = 0
inclusive points = 0

exclusive points = 2
inclusive points = 2

exclusive points = 2
inclusive points = 2

exclusive points = 2
inclusive points = 2

Figure 17. Exclusive and inclusive instrumentation point counts for source objects.
Exclusive instrumentation points refer to those instrumentation points associated with the
source object itself. Inclusive instrumentation points refer to those instrumentation points
associated with the source object, and all of its children. Note that the two unexpanded
module-level source objects show no instrumentation points. That is because the
instrumentation point information is only available once the module-level source object has
been expanded.

When calling either the SourceObj::exclusive_point or the
SourceObj::inclusive_point function, the analysis tool identifies a particular
InstPoint object by supplying the function with an index value. The
SourceObj::exclusive_point_count and SourceObj::inclusive_point_count
functions can be used to initialize a loop that will cycle though the InstPoint
objects and examine each in turn to determine if it represents a suitable location at
which to install a particular probe expression as a point probe.

The analysis tool can also get the InstPoint object for a point probe that has
already been installed by calling the ProbeModule::get_point function.

Once the analysis tool has a particular InstPoint object, it can call InstPoint class
functions to get information about the instrumentation point. If the analysis tool is
examining the instrumentation point to determine if a point probe should be
installed there, it will want to know whether the instrumentation point represents a
function entry, function exit, or function call site. To get this information, it can call
the InstPoint::get_type function, which returns one of the enumeration constants
(IPT_function_entry, IPT_function_exit, or IPT_function_call) of the
InstPtType enumeration type. If the instrumentation point represents a function call
site, the analysis tool can also get the location where the point probe will be placed
relative to the instrumentation point. To get this information, the analysis tool can
call the InstPoint::get_location function which returns one of the enumeration
constants (IPL_before or IPL_after) of the InstPtLocation enumeration type.
Figure 18 on page 54 illustrates the various instrumentation point type and location
information that the analysis tool can get by calling the InstPoint::get_type and
InstPoint::get_location functions.

 Chapter 2. What are the DPCL classes? 53

IPT_function_entry

include <stdio.h>

int setup(void);
int compute(int);
void check_value(int);

main()
{

.

.

.
setup();

.

.

.
y = compute(x);

.

.

.
check_values(y);

}

int setup(void)
{

.

.

.
/* code here */

.

.

.
return 0;

}

int compute(int x)
{

.

.

.
/* code here */

.

.

.
return y;

}

void check_value(int y)
{

.

.

.
/* code here */

.

.

.
return;

}

IPT_function_call/IPL_before
IPT_function_call/IPL_after

IPT_function_call/IPL_before
IPT_function_call/IPL_after

IPT_function_call/IPL_before
IPT_function_call/IPL_after

IPT_function_exit

IPT_function_exit

IPT_function_exit

IPT_function_exit

IPT_function_entry

IPT_function_entry

IPT_function_entry

Figure 18. Instrumentation point types and locations

In addition to the instrumentation point type and location information, the analysis
tool can:

� when the instrumentation point refers to a function call site, get the mangled or
demangled name of the function being called.

� get the SourceObj object that contains the instrumentation point.

� get the approximate line number in the source code where the instrumentation
point is located.

The following table summarizes the various functions of the InstPoint class. For
complete information on any of these functions, refer to the function's AIX man
page or the IBM Parallel Environment for AIX: DPCL Class Reference.

Table 10 (Page 1 of 2). InstPoint class function summary

Calling the function: Does this:

get_address Returns the address of this instrumentation point within the target application program.

get_container Returns the source object (SourceObj object) that contains this instrumentation point.

54 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 10 (Page 2 of 2). InstPoint class function summary

Calling the function: Does this:

get_demangled_name When the instrumentation point represents a function call site, copies, into a specified
buffer, the demangled name of that function.

get_demangled_name_length When the instrumentation point represents a function call site, returns the length of the
demangled name of the function. This enables the analysis tool to determine the size of
the buffer into which the get_demangled_name function will copy the demangled function
name.

get_line Returns the approximate line number in the source code where this instrumentation
point occurs.

get_location When the instrumentation point represents a function call site, indicates whether the
point probe will execute before or after the function call. This function indicates this
information by returning one of the enumeration constants (IPL_before or IPL_after) of
the InstPtLocation enumeration type.

get_mangled_name When the instrumentation point represents a function call site, copies, into a specified
buffer, the mangled name of that function.

get_mangled_name_length When the instrumentation point represents a function call site, returns the length of this
function's mangled name. This enables the analysis tool to determine the size of the
buffer into which the get_mangled_name function will copy the mangled function name.

get_type Indicates whether this instrumentation point represents a function entry, function exit, or
function call site. This function indicates this information by returning one of the
enumeration constants (IPT_function_entry, IPT_function_exit, or IPT_function_call)
of the InstPtType enumeration type.

operator = Assigns values to the InstPoint object.

operator ==
operator !=

Compares two InstPoint objects for equivalence.

What is the ProbeType class?
Objects of the ProbeType class (which is defined in the header file ProbeType.h)
represent data types associated with either a source object (SourceObj object), or a
probe expression (ProbeExp object). The member and friend functions of this class
are of two types — those that enable the analysis tool to create a ProbeType object
to represent a data type, and those that enable the analysis tool to query
information about a ProbeType object.

The functions that create ProbeType objects to represent a particular data type are
used by the analysis tool primarily for allocating memory for probes. When
allocating memory for use by probes (using the Process::alloc_mem,
Process::balloc_mem, Application::alloc_mem, and Application::balloc_mem
function), the analysis tool supplies a ProbeType object as a function parameter in
order to indicate the type of memory to allocate.

The functions that query ProbeType objects enable the analysis tool to ascertain the
data type associated with a particular source object (SourceObj object) or probe
expression (ProbeExp object). The ProbeType object associated with a source object
is returned by the SourceObj::get_data_type function, while the ProbeType object
associated with a probe expression is returned by the ProbeExp::get_data_type
function. The ability to get the data type of a source object or probe expression
enables the analysis tool to use the source object or probe expression value
correctly.

 Chapter 2. What are the DPCL classes? 55

One particularly useful ability of the ProbeType class is to return actual integer and
pointer values of function parameters. To do this, the analysis tool first creates a
ProbeType object that represents the function prototype (by calling the
ProbeType::function_type function). Then, it can create a probe expression by
calling the ProbeType::get_actual function (an index value supplied to the
ProbeType::get_actual function indicates the particular function parameter). When
the probe expression returned by the ProbeType::get_actual function is executed
within the target application process, it will get the actual parameter value. Note
that the ProbeType::get_actual function can only return an actual parameter value
if it represents a 32–bit integer or a pointer.

One important thing you should understand about ProbeType objects is that they are
expression trees. While in many cases (such as ProbeType objects representing an
integer) it is not necessary to represent the ProbeType object as a tree, we have
structured ProbeType objects as trees in order to have ProbeType objects that
represent pointers and function prototypes. (See Figure 19).

The data type information for each ProbeType object is represented by an
enumeration constant of the DataExpNodeType enumeration type. The analysis tool
can query this constant by calling the ProbeType::get_node_type function. The
analysis tool can also determine how many child ProbeType objects are under a
particular ProbeType object by calling the ProbeType::child_count function. To get
a particular child ProbeType object of a parent ProbeType object, the analysis tool
can call the ProbeType::child function. For example, if calling the
ProbeType::get_node_type function returns the enumeration constant
DEN_pointer_type (indicating a pointer to a pointee), the analysis tool can get the
ProbeType object for the pointee by calling the ProbeType::child function.

DEN_function_type
(function prototype)DEN_pointer_type

(pointer to pointee)

DEN_void_type
(void data type)

DEN_return_value_type
(function return

value type)

DEN_int32_type
(32-bit integer type)

DEN_pointer_type
(pointer to pointee)

DEN_void_type
(void data type)

Figure 19. Probe type trees. This figure illustrates the two situations (data types
representing pointers and function prototypes) in which a ProbeType expression tree will be
more complex than a single node. The analysis tool can call the ProbeType::get_node_type
function to determine the type represented by the ProbeType object's node in the expression
tree. To navigate down into the tree, the analysis tool can call the ProbeType::child function
to get a ProbeType object that represents one of the child ProbeType object nodes of the
current ProbeType object's node. In the case of a ProbeType object that represents a function
prototype, its leftmost subtree will represent the function return type and its right subtrees will
represent any function parameters.

The following table summarizes the various functions of the ProbeType class. For
complete information on any of these functions, refer to the function's AIX man
page or the IBM Parallel Environment for AIX: DPCL Class Reference.

56 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 11. ProbeType class function summary

Calling the function: Does this:

child Returns the sub-type of a data type (a child ProbeType object of this ProbeType object).
The analysis tool can use this function to:

� get the data type of the pointee (for a ProbeType object representing a pointer).

� get the data type of a function return type or argument (for a ProbeType object
representing a function).

child_count Returns the number of sub-types associated with a data type (the number of child
ProbeType objects for this ProbeType object).

function_type A friend function. Creates a ProbeType object that represents a function prototype or
type signature data type.

get_actual When the ProbeType object represents a function prototype, returns a probe expression
(ProbeExp object) representing the value of a particular function parameter. Note that the
ProbeType::get_actual function can only return an actual parameter value if it represents
an integer or a pointer.

get_node_type Indicates the type of this ProbeType object's node in the data type expression tree. This
function indicates this information by returning one of the enumeration constants of the
DataExpNodeType enumeration type.

int32_type A friend function. Creates a ProbeType object that represents a 32-bit integer.

operator = Assigns values to the ProbeType object.

operator ==
operator !=

Compares two ProbeType objects for equivalence.

pointer_type A friend function. Creates a ProbeType object that represents the data type of a pointer
to a pointee.

unspecified_type A friend function. Creates a ProbeType object that represents an unspecified data type.

void_type A friend function. Creates a ProbeType object that represents a void data type.

What is the Phase class?
Objects of the Phase class (which is defined in the header file Phase.h) represent
the control mechanism for invoking phase probes at set intervals. The phase
probes themselves are probe expressions (ProbeExp objects) that represent
references to probe module functions. Before instantiating a Phase object, the
analysis tool will:

1. add the probe module containing the functions to be invoked as phase probes
to one or more target application processes. The analysis tool can add the
probe module to a single process by calling the Process::load_module or
Process::bload_module function. The analysis tool can also add the probe
module to all processes managed by an Application object by calling the
Application::load_module or Application::bload_module function.

2. create a probe expression (ProbeExp object) representing a reference to each
probe module function that will serve as a phase probe. To do this, the analysis
tool calls the ProbeModule::get_reference function.

When instantiating the Phase class object, the analysis tool can specify up to three
phase probes (ProbeExp objects that reference probe module functions) to be
invoked and the CPU-time interval at which their execution will be triggered. The
three phase probes that can be invoked represent a begin function, a data function,
and an end function. While the phase must, in order to be useful, call at least one
of these functions, any one of them is optional. At the very least, an analysis tool
will usually supply a data function.

 Chapter 2. What are the DPCL classes? 57

Once the analysis tool has instantiated a Phase class object, it can:

� add the Phase to one or more target application processes by calling the
Process::add_phase, Process::badd_phase, Application::add_phase, or
Application::badd_phase function.

� if the Phase specifies a data function, allocate and associate data with the Phase
by calling the Process::alloc_mem, Process::balloc_mem,
Application::alloc_mem, or Application::balloc_mem function. Each time the
phase is triggered, its data function executes once per datum that the analysis
tool has previously allocated and associated with the phase.

� specify a set of probe module functions (ProbeExp objects that represent a
reference to those functions) to be executed when the phase is removed or the
application terminates. To specify this set of "exit functions", the analysis tool
can call the Process::set_phase_exit, Process::bset_phase_exit,
Application::set_phase_exit, or Application::bset_phase_exit function.

� ascertain, by calling the Process::get_phase_period function, the CPU-time
interval at which the phase is activated and its phase probes are invoked. If
desired, the analysis tool can reset this interval by calling the
Process::set_phase_period, Process::bset_phase_period,
Application::set_phase_period, or Application::bset_phase_period function.

� remove the Phase from one or more target application process by calling the
Process::remove_phase, Process::bremove_phase, Application::remove_phase,
or Application::bremove_phase function.

As you can see from the preceding list, most of the functions that act upon a Phase
class object are actually member functions of other classes. The Phase class itself
contains member functions only for assignment and equivalence comparison as
shown in the following table. For complete information on any of the functions
described in the preceding list or the following table, refer to the function's AIX man
page or the IBM Parallel Environment for AIX: DPCL Class Reference.

Table 12. Phase class function summary

Calling the function: Does this:

operator = Assigns values to the Phase object.

operator ==
operator !=

Compares two Phase objects for equivalence.

What is the AisStatus class?
Objects of the AisStatus class (which is defined in the header file AisStatus.h)
store status and severity codes (and, in some cases, data associated with the
status) returned by other DPCL functions, and can also be used by the analysis
tool to store status values for its own purposes. When a DPCL function call returns
an AisStatus object, the analysis tool can check its status code by calling the
AisStatus::status function, and its severity by calling the AisStatus::severity
function. The AisStatus::status function returns one of the constants enumerated
in the AisStatusCode enumeration type, and the AisStatus::severity function
returns one of the constants enumerated in the AisSteverityCode enumeration
type. For a complete listing and description of these constants, refer to the IBM
Parallel Environment for AIX: DPCL Class Reference.

58 IBM PE for AIX V3R1.0: DPCL Programming Guide

In some situations, the AisStatus object returned by the DPCL system will contain
one or more data values associated with the particular status. To determine if an
AisStatus object has any additional data values, the analysis tool can call the
AisStatus::data_count function. If there are, it can use the AisStatus::data_value
and AisStatus::data_value_length functions to get the value.

The analysis tool can also create AisStatus objects for its own status reporting.
The AisStatus class constructor enables the analysis tool to specify a status and
severity value and the AisStatus::add_data function enables it to associate data
with the status.

The following table summarizes the various functions of the AisStatus class. For
complete information on any of these functions, refer to the function's AIX man
page or the IBM Parallel Environment for AIX: DPCL Class Reference.

Table 13. AisStatus class function summary

Calling the function: Does this:

add_data Adds one data value to the list of data associated with this AisStatus object.

data_count Returns the number of data values associated with this AisStatus object.

data_value Copies, into a specified buffer, a particular data value associated with this AisStatus
object.

data_value_length Returns the length of a particular data value associated with this AisStatus object. This
enables the analysis tool to determine the size of the buffer into which the data_value
function will copy the data value.

operator = Assigns values to the AisStatus object

operator AisStatusCode Cast function that returns the status code reflected in this AisStatus object.

operator int Cast function that returns the integer equivalent of the status code reflected in this
AisStatus object.

severity Returns the severity code reflected in this AisStatus object. The severity code is
returned as one of the enumeration constants of the AisSeverityCode enumeration type.

status Returns the status code reflected in the object. The status code is returned as one of
the enumeration constants of the AisStatusCode enumeration type.

status_name Returns the name of the status code reflected in the object. The name is in American
English, and the string is stored in a constant array within the function. This function is
intended only for limited diagnostic use during tool development.

 Chapter 2. What are the DPCL classes? 59

60 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 3. A DPCL hello world program

Since this is a programming guide, tradition dictates that our first code example
should be a "Hello World" program (a simple program that prints out the string
"Hello World"). Unlike, traditional "Hello World" programs, however, our program
(hello.c) does not print out the "Hello World" string. Instead, all it does is put itself
into an infinite loop. This will be the target application in our example; we will show
how to instrument it so that it sends the "Hello World" string back to our analysis
tool.

The source code for both the "Hello World" target application and the analysis tool
were copied to the directory /usr/lpp/ppe.dpcl/samples/hello when you installed
DPCL. If you want to run these programs for illustration, refer to the instructions
“Compiling, linking, and running the DPCL hello world program” on page 70.

The hello world target application
The code for our target application is shown below. The reason we have designed
it to enter an infinite loop is so that the analysis tool we create in this example will
have time to connect to it. Without the infinite loop, this target application would exit
before our analysis tool had a chance to instrument it. We also put in some print
and sleep statements so its execution will be more visible for this example.

#include <stdio.h>

void hello(void);

main()
{
 while (1)
 {
 hello();
 }
}

void hello(void)
{

/0 This is where our call to printf("Hello World"); would be 0/

fprintf(stdout,"."); /0 something to help us see what is going on 0/
 fflush(stdout);
 sleep(1);

 return;
}

The hello world analysis tool
Since the DPCL is a C++ class library, we will use C++ to build our analysis tool.
We will call our analysis tool eut_hello and construct it in the file eut_hello.C. In
order to instrument our target application to print out the "Hello World" string, our
analysis tool needs to:

1. initialize itself to use the DPCL

2. connect to the target application

3. create a probe that will, once installed in the target application, send the "Hello
World" string back to the analysis tool

 Copyright IBM Corp. 2000 61

4. install the probe into the target application

5. enter the DPCL main event loop

These are the basic steps that DPCL analysis tools will follow to instrument target
applications. Note that since we are instrumenting a serial application in this
example:

� we will use an instance of the DPCL Process class to represent the target
application. If this were a parallel application, we would instead represent the
target application as an instance of the Application class or the PoeAppl class.
Keep in mind that, for all the Process class member functions illustrated in this
example, there are equivalent Application and PoeAppl member functions.

� we will, when they are available, use the blocking API calls in this example.
Since the target application in this example is not a parallel application, there is
no advantage to using the nonblocking versions of these calls. Keep in mind,
however, that the blocking calls we use in this example also have nonblocking
equivalents.

Also be aware that this is a simple DPCL programming example that does not
perform rigorous error checking. In general, actual DPCL programs you create
should check the status of DPCL function calls and respond to error conditions.
Here's the source code for our "Hello World" analysis tool. The rest of this chapter
will describe this code in more detail.

#include <stdio.h>
#include <stdlib.h> // for atoi() call
#include <libgen.h> // for basename() call
#include <dpcl.h>

#define MODNAME "hello.c"
#define FCNNAME "hello"

void data_cb (GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);

// %%

main(int argc, char 0argv[])
{

if (argc != 3) {
printf("Usage: %s <hostname> <target_pid>\n", argv[8]);

 exit(99);
 }

int apppid = atoi(argv[2]);

 Process P(argv[1], apppid);

 Ais_initialize();

printf("Connecting to process %d on node %s\n", apppid, argv[1]);

AisStatus sts = P.bconnect();
if (sts.status() != ASC_success) {

printf("bconnect error %s\n", sts.status_name());
 printf("exiting...\n");
 return 99;
 }

SourceObj myprog = P.get_program_object();

 SourceObj mymod;

const int bufSize = 1824;
char bufmname[bufSize]; // buffer for module_name(..)

62 IBM PE for AIX V3R1.0: DPCL Programming Guide

 printf("\n");
printf("module count = %d\n", myprog.child_count());
printf("looking for module '%s'\n", MODNAME);

int found = 8; // flag for whether we find module we want

for (int c = 8; found == 8 && c < myprog.child_count(); c++) {
mymod = myprog.child(c);

 mymod.module_name(bufmname, bufSize);
if (strcmp(basename(bufmname), MODNAME) == 8)

found = 1;
 }

if (!found) {
printf("cannot find module '%s'\n", MODNAME);
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

 printf("\n");
printf ("found module %s -- expanding....\n", MODNAME);

sts = mymod.bexpand(P);
if (sts.status() != ASC_success) {

printf("bexpand failed: %s\n", sts.status_name());
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

 printf("\n");
printf("function count = %d\n", mymod.child_count());
printf("look for the function '%s'\n", FCNNAME);

 SourceObj myfun;

char bufdname[bufSize]; // buffer for get_demangled_name(..)

found = 8;
for (c = 8; found == 8 && c < mymod.child_count(); c++) {

myfun = mymod.child(c);
 myfun.get_demangled_name(bufdname, bufSize);

if (strcmp(bufdname, FCNNAME) == 8)
found = 1;

 }

if (!found) {
printf("cannot find function '%s'\n", FCNNAME);
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

 printf("\n");
printf("looking for an instrumentation point\n");

 InstPoint mypoint;

printf("point count = %d\n", myfun.exclusive_point_count());

found = 8;
for (c = 8; found == 8 && c < myfun.exclusive_point_count(); c++) {

mypoint = myfun.exclusive_point(c);
if (mypoint.get_type() == IPT_function_entry)

found = 1;
 }

if (!found) {
printf("cannot find entry point for function '%s'\n", FCNNAME);
printf("disconnecting and exiting...\n");

 P.bdisconnect();

 Chapter 3. A DPCL hello world program 63

 return 99;
 }

ProbeExp parms[3]; // Create an array of expressions

char 0 hello_message = "Hello World";

parms[8] = Ais_msg_handle;
parms[1] = ProbeExp(hello_message);
parms[2] = ProbeExp (1 + strlen(hello_message));

ProbeExp myexp = Ais_send.call(3,parms);

 ProbeHandle myph;

GCBFuncType mydcb = data_cb;

 GCBTagType mytg = 8;

 printf("\n");
printf("found instrumentation point -- installing probe\n");
sts = P.binstall_probe(1, &myexp, &mypoint, &mydcb, &mytg, &myph);
if (sts.status() != ASC_success) {

printf("binstall_probe failed: %s\n", sts.status_name());
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

sts = P.bactivate_probe(1, &myph);
if (sts.status() != ASC_success) {

printf("bactivate_probe failed: %s\n", sts.status_name());
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

 printf("\n");
 Ais_main_loop();
}

// %%

void
data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

printf("%s\n", (char0) msg);
}

// %%

Step 1: Initialize tool to use the DPCL system
In order to use the DPCL, all analysis tools must:

� include the header file for each DPCL class and function group it uses.

#include <dpcl.h>

� call the DPCL initialization routine (Ais_initialize)

Ais_initialize();

64 IBM PE for AIX V3R1.0: DPCL Programming Guide

Step 2: Connect to the target application
The next step is to create a Process class object that represents the target
application process, and then use this Process class object to connect to the target
application process. The Process class constructor takes two parameters — one
specifying the host name where the target application is running, and the other
specifying its process ID. Our analysis tool will have the user supply this
information as command-line arguments when starting the tool; the first argument
will specify the host name, and second will be the process ID.

The following statement initializes an object of type Process using the information
supplied in the command-line arguments.

Process P(argv[1], apppid);

Once our analysis tool has a Process class object that identifies the target
application process, it connects to that process using the Process::bconnect
member function.

 Ais_initialize();

printf("Connecting to process %d on node %s\n", apppid, argv[1]);

AisStatus sts = P.bconnect();
if (sts.status() != ASC_success) {

printf("bconnect error %s\n", sts.status_name());
 printf("exiting...\n");
 return 99;
 }

Step 3: Create hello world probe
Now that it's connected to the target application, our analysis tool needs to create a
point probe that will send the string "Hello World" back to our analysis tool each
time execution enters the target application's hello function. A simple probe
expression will be sufficient to accomplish this; a probe module will not be
necessary in this case. To send data back to the analysis tool, the DPCL provides
a predefined probe expression (Ais_send). Ais_send is a probe expression
representation of a function for sending data back to the analysis tool. The function
represented by the Ais_send probe expression takes three parameters — a
message handle for managing where the message is sent, the address of the data
to send, and the size of the data being sent. If we were able to hand code this
function call into our target application, it would look something like this:

Ais_send(Ais_msg_handle, "Hello World", 12);

Using the ProbeExp class in the DPCL, however, we have to use a slightly different
approach to accomplish the same thing. That is because Ais_send is a probe
expression representation of the actual function, and each parameter to the function
also needs to be a probe expression. Then, all these individual probe expressions
need to be combined into a single probe expression that represents the function
call with parameters.

First our analysis tool needs to create an array of probe expressions, each
representing one of the parameters to the Ais_send function. Note in the following
code that Ais_msg_handle is another predefined probe expression supplied by the
DPCL. It is specifically designed for the Ais_send function for managing where the
message is sent.

 Chapter 3. A DPCL hello world program 65

ProbeExp parms[3]; // Create an array of expressions

char 0 hello_message = "Hello World";

parms[8] = Ais_msg_handle;
parms[1] = ProbeExp(hello_message);
parms[2] = ProbeExp (1 + strlen(hello_message));

Next the analysis tool can create a probe expression that calls Ais_send using the
three parameters defined in the parms array.

ProbeExp myexp = Ais_send.call(3,parms);

So now our analysis tool has a probe expression that, once installed as a point
probe within the target application's hello function, will, each time execution enters
the hello function, send the "Hello World" string back to the analysis tool.

What our analysis tool needs now is a callback routine that will handle those "Hello
World" messages sent back from the point probe. In this example, our callback will
simply print the string that it receives to standard output. The following code shows
our callback definition:

// %%

void
data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

printf("%s\n", (char0) msg);
}

// %%

Step 4: Install and execute probe in the target application
In the preceding step (“Step 3: Create hello world probe” on page 65), we created
a probe that will send the "Hello World" string back to the analysis tool. Now we
need to identify the location, or "instrumentation point", within the target application
where we can install our probe. When the analysis tool connected to the target
application, the DPCL system gathered information about the target application's
source structure down to the module (or file) level. Our analysis tool can examine,
and expand, this structure to find an appropriate instrumentation point.

First the analysis tool needs to get a reference to the source structure of the target
application process. This source structure is represented as a hierarchy of source
objects (SourceObj class objects). The top level source object (the root of the
hierarchy) is called the "program object". To get a reference to this object, our
analysis tool uses the member function Process::get_program_object.

SourceObj myprog = P.get_program_object();

Next our analysis tool needs to search through the list of children contained within
the program object. This list of children should be the set of modules contained
within the target application. To find the hello.c module, our analysis tool uses the
SourceObj::child_count function to determine the number of children (modules) in
the program object. Once it knows the number of children, it uses a for loop to
check the name of each child module source object of the program object. To get
each child module source object of the program object, the analysis tool uses the
SourceObj::child function. To check the name of each child, the analysis tool uses
the SourceObj::module_name function.

66 IBM PE for AIX V3R1.0: DPCL Programming Guide

 SourceObj mymod;

const int bufSize = 1824;
char bufmname[bufSize]; // buffer for module_name(..)

 printf("\n");
printf("module count = %d\n", myprog.child_count());
printf("looking for module '%s'\n", MODNAME);

int found = 8; // flag for whether we find module we want

for (int c = 8; found == 8 && c < myprog.child_count(); c++) {
mymod = myprog.child(c);

 mymod.module_name(bufmname, bufSize);
if (strcmp(basename(bufmname), MODNAME) == 8)

found = 1;
 }

if (!found) {
printf("cannot find module '%s'\n", MODNAME);
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

 printf("\n");
printf ("found module %s -- expanding....\n", MODNAME);

sts = mymod.bexpand(P);
if (sts.status() != ASC_success) {

printf("bexpand failed: %s\n", sts.status_name());
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

Note that once the analysis tool finds the hello.c module object, it must expand it.
This is because, when the DPCL system connects to the target application, it
retrieves the source hierarchy only down to the module level. To obtain additional
information, our analysis tool must expand the specific module it is interested in. In
the preceding code example, our analysis tool did this using the
SourceObj::bexpand function.

sts = mymod.bexpand(P);

Now that the hello.c module object is expanded, our analysis tool can go deeper
into the target application's source hierarchy. This next level contains the list of
function and global data variables found within the module. In this next segment of
code, our analysis tool looks through the list of the hello.c module's children
looking for the hello function. To do this, the analysis tool uses the
SourceObj::child_count, SourceObj::child, and SourceObj::get_demangled_name
member functions.

 Chapter 3. A DPCL hello world program 67

 printf("\n");
printf("function count = %d\n", mymod.child_count());
printf("look for the function '%s'\n", FCNNAME);

 SourceObj myfun;

char bufdname[bufSize]; // buffer for get_demangled_name(..)

found = 8;
for (c = 8; found == 8 && c < mymod.child_count(); c++) {

myfun = mymod.child(c);
 myfun.get_demangled_name(bufdname, bufSize);

if (strcmp(bufdname, FCNNAME) == 8)
found = 1;

 }

if (!found) {
printf("cannot find function '%s'\n", FCNNAME);
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

Now that it has a reference to the hello function source object, our analysis tool
needs to find an instrumentation point where it can place its point probe. In
particular, the analysis tool is looking for an instrumentation point that represents
the function entry point. To do this, the analysis tool uses a technique similar to the
one used to find the hello function. Instead of the SourceObj::child_count,
SourceObj::type, and SourceObj::module_name functions that it used to find the
hello function, however, it now uses functions designed to identify instrumentation
point information. These functions are the SourceObj::exclusive_point_count,
SourceObj::exclusive_point, and SourceObj::get_type functions.

printf("looking for an instrumentation point\n");

 InstPoint mypoint;

printf("point count = %d\n", myfun.exclusive_point_count());

found = 8;
for (c = 8; found == 8 && c < myfun.exclusive_point_count(); c++) {

mypoint = myfun.exclusive_point(c);
if (mypoint.get_type() == IPT_function_entry)

found = 1;
 }

if (!found) {
printf("cannot find entry point for function '%s'\n", FCNNAME);
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

At this point in the analysis tool's code, it has all it needs to instrument the target
application. It has:

� an object of type Process that represents the target application process

� an object of type InstPoint that represents the function entry point to the target
application's hello function.

� a probe expression (ProbeExp object) that sends back "Hello World" strings to
the analysis tool. The analysis tool will install this probe expression as a point
probe at the entry point to the target application's hello function.

68 IBM PE for AIX V3R1.0: DPCL Programming Guide

� a callback routine that will print the "Hello World" strings as they are sent from
the installed point probe.

Now the analysis tool can actually install the probe expression as a point probe
within the target application. The following code installs our probe using the
member function Process::binstall_probe which takes, as parameters:

� the probe expression to install

� the instrumentation point that represents where to install it

� a tag parameter for passing optional information to the callback

� the callback for handling messages sent from the probe

� a probe handle that the analysis tool can use to reference the probe after it is
installed.

 ProbeHandle myph;

GCBFuncType mydcb = data_cb;

 GCBTagType mytg = 8;

 printf("\n");
printf("found instrumentation point -- installing probe\n");
sts = P.binstall_probe(1, &myexp, &mypoint, &mydcb, &mytg, &myph);
if (sts.status() != ASC_success) {

printf("binstall_probe failed: %s\n", sts.status_name());
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

Now the point probe is installed, but it is not yet active. To activate our probe so
that its code will execute as if it were part of the target application's code, our
analysis tool calls the function Process::bactivate_probe as shown below. Note
that this function takes, as a parameter, the probe handle myph (specified when the
analysis tool installed the probe).

sts = P.bactivate_probe(1, &myph);
if (sts.status() != ASC_success) {

printf("bactivate_probe failed: %s\n", sts.status_name());
printf("disconnecting and exiting...\n");

 P.bdisconnect();
 return 99;
 }

 printf("\n");
 Ais_main_loop();
}

Step 5: Entering the DPCL main event loop
At the bottom of our main routine, note that the analysis tool calls the DPCL event
handling function (Ais_main_loop). This is necessary because the DPCL system is
asynchronous in the way it interfaces with the analysis tool. Calling the
Ais_main_loop function places the analysis tool in an event loop for responding
asynchronously to messages sent by the DPCL system.

Ais_main_loop();

 Chapter 3. A DPCL hello world program 69

Compiling, linking, and running the DPCL hello world program
Now that we have described the code contained in both our target application
(hello.c) and our analysis tool (eut_hello.C), let's run these programs. When you
installed DPCL (as described in IBM Parallel Environment for AIX: Installation), the
source code for these two programs was copied to the directory
/usr/lpp/ppe.dpcl/samples/hello. To run these programs:

1. Copy the contents of the hello directory to a location where you can update
the files. You must do this since root owns the hello directory, and you
otherwise will not be able to run the makefiles provided.

cp /usr/lpp/ppe.dpcl/samples/hello/0 mydir

2. Change directories to the directory that contains the copied files.

cd mydir

3. Compile and link the target application as you normally would. We have
provided a makefile for this step.

make -f Makefile.hello

4. Prelink your target application with a special DPCL library. We have provided a
general-purpose shell script (prelink) to perform this step. This script is located
in the directory /usr/lpp/ppe.dpcl/samples/prelink. Assuming you have copied
the script to the same directory as your hello executable, you would enter the
following at the AIX command prompt.

prelink hello

The prelink script creates a prelinked output file with the extension .DPCL; in
this example hello.DPCL.

5. Compile and link the analysis tool. We have provided a makefile for this step.

make -f Makefile.eut_hello

6. Start the target application.

hello.DPCL

7. In a separate xterm window, start the analysis tool, passing it the host name of
the node running the target application and the target application's process ID.
You can use the AIX command ps to ascertain the target application's process
ID.

eut_hello hostname process-ID

As the analysis tool runs, it prints out informational messages to show where it is in
the process of instrumenting the target application. It installs the probe into the
target application that, when it executes, sends the "Hello World" string back to the
analysis tool. The callback routine for the probe, when activated, prints out the
"Hello World" string.

70 IBM PE for AIX V3R1.0: DPCL Programming Guide

Standard DPCL Programming Tasks

This section contains instructions for performing common tasks that all programs
built on the DPCL system will need to perform. These instructions are divided into
the following chapters.

� Chapter 4, “Performing status error checking” on page 73 provides general
information on DPCL error checking.

� Chapter 5, “Initializing the analysis tool to use the DPCL system” on page 79
describes standard initialization tasks that your analysis tool must perform.

� Chapter 6, “Connecting to or starting the target application processes” on
page 83 describes how your analysis tool can:

– if the target application is already running, establish a connection to each
process in the target application. The analysis tool must establish a
connection to a target application process if it is to later dynamically insert
probes into that process.

– create one or more target application processes if the target application is
not already running. When an analysis tool creates a process, the DPCL
system also establishes the connection necessary for inserting probes into
the process.

� Chapter 7, “Controlling execution of target application processes” on page 105
describes how an analysis tool can attach itself to a target application process
in order to control execution of the process. It describes how an application
can, once in this attached state, use DPCL function calls to suspend, resume,
or kill one or more target application process.

� Chapter 8, “Creating probes” on page 115 describes how to create DPCL
probes that can execute as part of a target application process. It describes
how, once you have determined the logic you want the probe to perform, you
can create the analysis tool code to build a probe expression to represent that
logic. Since the programmatic capabilities of simple probe expressions are
limited and not reusable among analysis tools, this chapter also describes how
a probe expression can optionally call a function written in C and compiled into
a probe module.

� Chapter 9, “Executing probes in target application processes” on page 143
describes the steps that your program must follow to insert a probe into one or
more target application process for execution. The manner in which a probe is
installed and executed within the target application process(es) distinguishes
the probe as a particular probe type — either a point probe, a phase probe, or
a one-shot probe. This chapter contains instructions for installing a probe as
any one of these probe types.

� Chapter 10, “Creating data callback routines” on page 167 describes how an
analysis tool can create a "data callback routine" to respond to data sent back
to the analysis tool from probes executing within target application processes.

� Chapter 11, “Entering and exiting the DPCL main event loop” on page 169
describes how an analysis tool can enter an event loop to interface
asynchronously with the DPCL system.

 Copyright IBM Corp. 2000 71

� Chapter 12, “Disconnecting from target application processes” on page 171
describes how an analysis tool can disconnect itself from processes it has
finished examining, and exit from the DPCL main event loop.

� Chapter 13, “Compiling and linking the analysis tool and target application” on
page 173 describes how to prelink your target application with the DPCL
libraries and compile your analysis tool with the DPCL library and include files.

Instructions for other, more advanced and/or less-commonly performed, DPCL
programming tasks (monitoring signals and file descriptors, overriding default
system callbacks, and generating diagnostic logs) are contained in “Additional
DPCL Programming Tasks” on page 175.

72 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 4. Performing status error checking

Before we describe such standard DPCL programming tasks as initializing the
analysis tool and connecting to a target application, a general discussion of DPCL
error checking is in order. While many of the code examples in this book are for
illustration only and therefore do not perform rigorous error checking, any real-world
DPCL application will need to check the return status of each DPCL function it
calls. As with any kind of error-checking situation, if the status returned by a DPCL
function call indicates an error condition, the analysis tool should respond to the
condition in some way. For example, if the returned status for a Process::bconnect
call indicates that if was unable to connect to the process because of an invalid
process ID, the analysis tool could respond by displaying the invalid process ID to
the analysis tool user and prompt the user to supply a valid one. If error checking
were not performed in this example, then subsequent DPCL calls made by the
analysis tool (for, say, probe installation) would also fail since a connection to the
process was never established.

As described in “What is the AisStatus class?” on page 58, status is returned by
DPCL functions in the form of AisStatus objects which store status and severity
codes. In some cases, the AisStatus object also contains data associated with the
status. For example, in the situation described above in which the AisStatus object
indicated that the process ID was invalid, the AisStatus object would also contain a
data string to show the invalid process ID.

The following example code shows a single error checking routine that examines
an AisStatus object and reports error conditions to the analysis-tool user. This
simple function first calls the AisStatus::status function to see if it indicates the
successful completion of whatever service was requested. If it does not, the
function then calls the AisStatus::status_name function to get the name of the
status code that was returned, and prints this name to standard output. Since the
AisStatus object might also contain data associated with the error condition, the
following example function also calls the AisStatus::data_count and
AisStatus::data_value functions to get this information if it is available. The
AisStatus::data_count function returns the number of data values associated with
the AisStatus object and is used here to initialize a loop. The
AisStatus::data_value function copies a particular data value associated with the
AisStatus object into a specified buffer — in this case the buffer buf. For more
information on the AisStatus::status, AisStatus::data_count, and
AisStatus::data_value functions, refer to their AIX man pages or the IBM Parallel
Environment for AIX: DPCL Class Reference.

 Copyright IBM Corp. 2000 73

#include <stdio.h>
#include <stdlib.h>
#include "dpcl.h"

#define BUFLEN 128

void check_status(AisStatus &sts, char 0name) {
 char buf[BUFLEN];
int i, dc;

if (sts.status() != ASC_success) {
printf("error from %s: %s\n", name, sts.status_name());
dc = sts.data_count();
for (i=8; i<dc; ++i) {
sts.data_value(i, buf, BUFLEN);

 printf(" '%s'\n", buf);
 }
 }
}

main(int argc, char 0argv[]) {
 AisStatus sts;
 char hostname[BUFLEN];
 int apppid;

if (argc < 3) {
printf("need two args\n");

 return 8;
 }

 strcpy(hostname, argv[1]);
apppid = atoi(argv[2]);

Process P(hostname, apppid);

 Ais_initialize();

sts = P.bconnect();
if (sts.status() != ASC_success) {

 check_status(sts, "bconnect");
 }

 return 8;
}

Asynchronous DPCL calls and Application class calls that perform operations for
each process managed by the Application object introduce additional complexity
to DPCL status error checking. Calls to asynchronous functions return immediately,
but the returned AisStatus object will indicate only whether or not the DPCL
service requested by the function was successfully sent, and not whether or not it
succeeded. To determine the status of the operation when it actually succeeds or
fails, the analysis tool can specify an acknowledgment callback routine when calling
the asynchronous function. When the service requested by the asynchronous
function either succeeds or fails, the DPCL system will trigger execution of the
specified callback and will pass it the AisStatus object and a pointer to the Process
object for which the requested service either succeeded or failed. When calling an
asynchronous function, the analysis tool can also specify a tag value which will also
be passed by the DPCL system to the acknowledgment callback.

The function prototype for a callback is:

void callback (
 GCBSysType sys,
 GCBTagType tag,
 GCBObjType obj,
 GCBMsgType msg);

74 IBM PE for AIX V3R1.0: DPCL Programming Guide

Where: is:

sys a data structure defined as

struct GCBSysType {
 int msg_socket;
 int msg_type;
 int msg_size;
};

Where Is

msg_socket the socket or file descriptor from which
the message was received.

msg_type a message key or type value that
represents the protocol or purpose
behind the message. This is provided
and used by the DPCL system in order
to determine the callback routine to
execute.

msg_size the size of the message in bytes.

tag a value, large enough to contain a pointer, that is supplied by the
analysis tool when the acknowledgment callback is identified. (In other
words, when the asynchronous function is called.)

The tag parameter allows the analysis tool to use the acknowledgement
callback routine for more than one purpose. For example, the analysis
tool could create a general-purpose acknowledgment callback that could
be used when calling any asynchronous function. The tag value in that
case could contain information about which asynchronous function was
called.

obj a pointer to the object that issued the request. In the case of the
Application object, the requesting object will be the Process object
managed by the Application object. The DPCL system supplies this
information because, if an asynchronous Application function was
called, the same acknowledgment callback will be triggered for each
Process object managed by the Application object. By supplying a
pointer to the invoking object, the DPCL system enables the callback to
ascertain the Process for which status is being returned.

msg the AisStatus object.

Acknowledgment callback routines are particularly useful when error checking
asynchronous Application class functions. Since these functions perform the
requested operation on each Process object managed by the Application object,
the DPCL system will trigger the callback routine for each Process object in turn.
Since the operation may succeed on some processes while failing on others, the
acknowledgment callback routine enables the analysis tool to check the status for
each process.

The following example code calls the Application::connect function to connect to
each process managed by the Application object. In this example, a generic error
checking routine (check_status) is called to check the initial status returned by the
Application::connect call, and is also called within the acknowledgment callback
to check the status for each Process. Remember that the AisStatus object returned
by the initial Application::connect call indicates only whether or not the request to

 Chapter 4. Performing status error checking 75

connect was successfully sent; it does not indicate whether or not any of the
connect operations actually succeeded. As the connect request succeeds or fails
for each particular Process object, the callback connect_cb is invoked and passed
the AisStatus object, a pointer to the Process object, and, in this example, a
pointer to the Application object (passed as the callback's tag value). Note that
each time the callback is invoked, it increments the value of the integer count. The
code uses this for comparison with the constant integer NUM_PROCS (defined outside
the code shown) which indicates the number of Process objects managed by the
Application object. When count is equal to NUM_PROCS, then all the processes
managed by the Application object are connected, and the callback can continue
with the next piece of work (in this case, calling the Application::attach function
to attach to the processes).

//
// connect to the application
//
sts = A.connect(connect_cb, (GCBTagType) &A);

check_status("A.connect(connect_cb, (GCBTagType) &A)", sts);

NUM_PROCS = A.get_count();
//
// callback to be called after the connect completes
//
void connect_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

static int count = 8;
 count++;

 //
// get the status from the msg parm

 //
AisStatus 0stsp = (AisStatus 0)msg;

 check_status("connect_cb()", 0stsp);

 //
// get ptr to the process object from the obj parm

 //
Process 0p = (Process 0)obj;

printf(" %s: connect to pid: %d of Application\n", toolname, p->get_pid());

if (count >= NUM_PROCS) {
 //

// get ptr to app object from the tag parm
 //

Application 0a = (Application 0)tag;
printf(" %s: connected to entire Application A\n", toolname);

 //
// attach to the application

 //
AisStatus sts = a->attach(attach_cb, tag);

check_status("a->attach(attach_cb, tag)", sts);
 }
}

//
// generic status-checking routine
// print status and exit when status is not success
//
void check_status (char 0str, AisStatus sts)
{

static char buf[256];

if (sts.status() == ASC_success) {
 return;

} else {
printf("%s: Status for %s: %d, %s\n", toolname, str, sts.status(), sts.status_name());
for (int i=8; i<sts.data_count(); i++) {

76 IBM PE for AIX V3R1.0: DPCL Programming Guide

printf(" %s: data_value[%d]: %s\n", toolname, i, sts.data_value(i, buf, sizeof(buf)));
 }
 }

printf(" %s: exiting\n", toolname);
 fflush(stdout);
 exit(-1);
}

The preceding example illustrates how, when calling an asynchronous Application
function, the analysis tool can use an acknowledgment callback to check the return
status for each Process object managed by the Application object. When calling a
blocking Application function, however, the analysis tool is not able to specify an
acknowledgment callback. For blocking Application functions, acknowledgment
callback routines are not necessary since the blocking calls do not return until the
requested operation has either succeeded or failed for all of the Process objects
managed by the Application object. To perform error status checking for a
blocking Application function, the analysis tool should first examine the AisStatus
object returned by the function — the AisStatus object will indicate whether or not
the operation succeeded for all processes managed by the Application object. If it
did not succeed for all processes, the analysis tool can call the
Application::status function to determine the processes on which the operation
failed. The Application::status function has one parameter — an index value that
identifies the Process within the collection of those managed by the Application
object. The Application::get_count function returns the number of Process
objects managed by the Application object, and so can be used by the analysis
tool to initialize a loop that calls the Application::status function to check each
Process object's status in turn.

In the following example, a generic error checking routine (check_status) is called
to check the status returned by the Application::bconnect call. If the returned
status indicates that the connect operation failed on one or more processes, the
same error checking routine is called to check the return status for each individual
process.

#include <stdio.h>
#include <stdlib.h>
#include "dpcl.h"

#define BUFLEN 128

void check_status(AisStatus &sts, char 0name) {
 char buf[BUFLEN];
int i, dc;

if (sts.status() != ASC_success) {
printf("error from %s: %s\n", name, sts.status_name());
dc = sts.data_count();
for (i=8; i<dc; ++i) {
sts.data_value(i, buf, BUFLEN);

 printf(" '%s'\n", buf);
 }
 }
}

main(int argc, char 0argv[]) {
 AisStatus sts;
 char hostname[BUFLEN];
 char msg[BUFLEN];
int i, pc;

 .
 .
 .

// Code here to initialize application, create Process objects, organize

 Chapter 4. Performing status error checking 77

// them under an Application object, and so on.
 .
 .
 .
sts = A.bconnect();
if (sts.status() != ASC_success) {

 check_status(sts, "A.bconnect");

pc = A.get_count();
for (i=8; i<pc; i++) {
Process P = A.get_process(i);
int tasknum = P.get_task();
sprintf(msg, "bconnect on task %d", tasknum);
sts = A.status(i);

 check_status(sts, msg);
 }

 return 8;
 }

// rest of program
}

78 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 5. Initializing the analysis tool to use the DPCL
system

All DPCL analysis tools must, in order to use the DPCL system, perform the same
initialization tasks. These tasks are the same whether the analysis tool is
instrumenting a serial or parallel program. To initialize itself to use the DPCL
system, the analysis tool must include the DPCL header files and initialize the
DPCL system.

The following steps describe these three tasks in more detail. For sample code, see
“Example: Initializing the analysis tool to use the DPCL system” on page 81.

Step 1: Include DPCL header file(s)
In order to have access to the functionality of the DPCL system, your analysis tool
code must include the header file for each class, function, or function group that it
will use. Your analysis tool can either include the header file dpcl.h (which includes
all of the DPCL header files), or else it can include the individual header files that
define just the classes, functions, or data types that it needs. To include all of the
DPCL header files, use the preprocessor directive:

#include <dpcl.h>

If your analysis tool is a fairly simple application that does not use all the DPCL
classes, you might, in order to minimize the size of your executable, want it to
include only the header files for the classes, functions, and data types that it uses.
The following table summarizes these individual header files. For more information
on any of the classes or functions defined in these header files, refer to the IBM
Parallel Environment for AIX: DPCL Class Reference.

Table 14 (Page 1 of 2). DPCL header files

This Header File: Explanation:

AisGlobal.h Defines the global variables Ais_msg_handle and Ais_send. These global variables are used by
probes when sending messages back to the analysis tool.

AisHandler.h Contains the function prototypes (and a supporting data type definition) for the AisHandler
function group. The functions in this function group are designed to enable the analysis tool to
monitor signals and file descriptors through the DPCL system.

AisInit.h Contains the function prototype for the Ais_initialize function. This function initializes the DPCL
system.

AisMainLoop.h Contains the function prototype for the Ais_Main_Loop and Ais_end_main_loop functions. The
Ais_Main_Loop function puts execution in an endless event loop that enables the analysis tool to
interface asynchronously with the DPCL system. The Ais_end_main_loop function breaks
execution out of this event loop.

AisStatus.h Defines the AisStatus class and contains the function prototypes (and supporting data type and
constant definitions) for all functions in the class. Objects of the AisStatus class store status and
severity codes returned by certain DPCL functions.

Application.h Defines the Application class and contains the function prototypes for all functions in the class.
Objects of this class represent related processes (Process class objects). Specifically, the target
application can use objects of this class to represent a set of tasks in a parallel program.

dpclExt.h Contains a prototype of the Ais_send function; used only with probe modules.

GenCallBack.h Defines the GenCallBack data types for callback parameters.

 Copyright IBM Corp. 2000 79

Table 14 (Page 2 of 2). DPCL header files

This Header File: Explanation:

InstPoint.h Defines the InstPoint class and contains the function prototypes (and supporting data type and
constant definitions) for all functions in the class. Objects of this class represent instrumentation
points in target application processes (where the analysis tool can install point probes).

LogSystem.h Contains the function prototypes (and supporting data type and constant definitions) for the
LogSystem function group. These functions enable the analysis tool to generate a diagnostic log.

Phase.h Defines the Phase class and contains the function prototypes for all functions in the class. Objects
of this class represent phase probes.

PoeAppl.h Defines the PoeAppl class and contains the function prototypes for all functions in the class.
Objects of this class (which is derived from the Application class) represent POE application
processes. The PoeAppl class contains prototypes for convenience functions specific to
manipulating POE applications (like starting a POE application in a stopped state, reading a POE
configuration file, and supplying standard input text to the POE application).

ProbeExp.h Defines the ProbeExp class and contains the function prototypes (and supporting data type and
constant definitions) for all functions in the class. Objects of this class represent probe
expressions to be executed within one or more target application processes.

ProbeHandle.h Defines the ProbeHandle class and contains the function prototypes for all functions in the class.
Objects of this class represent probe handles (references to probes that the analysis tool has
installed in target application processes).

ProbeModule.h Defines the ProbeModule class and contains the function prototypes for all functions in the class.
Objects of this class represent probe modules to be loaded into one or more target application
processes.

ProbeType.h Defines the ProbeType class and contains the function prototypes (and supporting data type and
constant definitions) for all functions in the class. Objects of this class represent a variable type
(of a variable defined in a target application process or a probe).

Process.h Defines the Process class and contains the function prototypes for all functions in the class.
Objects of this class represent a target application process.

SourceObj.h Defines the SourceObj class and contains the function prototypes (and supporting data type and
constant definitions) for all functions in the class. Objects of this class represent part of the source
code structure associated with a particular target application process.

Step 2: Initialize the DPCL system
All analysis tools built on the DPCL must initialize the DPCL system by calling the
Ais_initialize function.

Ais_initialize();

The prototype for this function is contained in the header file AisInit.h.

Calling the Ais_initialize function enables the DPCL system to respond to
unexpected system events such as a DPCL daemon exiting, or a target application
process terminating. When such unexpected events occur, the DPCL system calls
the appropriate system callback routine — either a default one provided by the
DPCL system that simply prints out an error message, or one that you supply as
part of the analysis tool code.

For general information about DPCL callbacks, refer to “What are DPCL callbacks?”
on page 12. For information on overriding the default system callback routines with
your own system callback routines, refer to Chapter 15, “Overriding default system
callbacks” on page 181.

80 IBM PE for AIX V3R1.0: DPCL Programming Guide

Example: Initializing the analysis tool to use the DPCL system
The following example code:

� includes the DPCL header files.

� calls the Ais_initialize function to initialize the DPCL system.

� calls the Ais_main_loop function to enter the DPCL main event loop. This
enables the analysis tool to respond asynchronously to messages from DPCL
communication daemons.

#include <dpcl.h>

main()
{
 Ais_initialize();

 .
. // Program Code Here

 .

}

 Chapter 5. Initializing the analysis tool to use the DPCL system 81

82 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 6. Connecting to or starting the target application
processes

In order for your analysis tool to be able to dynamically insert probes into a target
application process, it must have established a communication connection to that
process. This "communication connection" is achieved though a socket connection
from the analysis tool to the DPCL communication daemon, and shared-memory
communication between the DPCL communication daemon and the target
application process. There are two ways an analysis tool may establish such a
connection to a process — either by calling a DPCL function to explicitly connect to
the process, or by calling a DPCL function to actually create the process (which will
implicitly establish the necessary connection). This chapter describes how an
analysis tool can:

� if the target application is already running, establish a connection to each
process in the target application. The analysis tool must establish a connection
to a target application process if it is to later dynamically insert probes into that
process. The first section of this chapter (“Connecting to the target application”)
discusses the procedures for connecting to a serial application, a parallel
(non-POE) application, and a POE application.

� create one or more target application processes if the target application is not
already running. When an analysis tool creates a process, the DPCL system
also establishes the connection necessary for inserting probes into the process.
The second section of this chapter (“Starting the target application” on
page 94) discusses the procedure for starting a serial application, a parallel
(non-POE) application, and a POE application.

Connecting to the target application
Before an analysis tool can install and execute probes within a target application
process, it must first establish a connection to that process. Connecting to a target
application process on a particular host machine creates two DPCL daemon
processes on that host — a DPCL superdaemon process, and a DPCL
communication daemon process.

The DPCL superdaemon creates the DPCL communication daemon and is
responsible for ensuring that only one communication daemon per user exists on
the remote host. Although the DPCL superdaemon establishes the initial connection
to the target application process, it passes this connection to the DPCL
communication daemon. It is then the DPCL communication daemon that handles
the communication between the analysis tool and the target application process. It
is also the DPCL communication daemon that performs much of the actual work
requested, via DPCL function calls, by the analysis tool. For more information on
the DPCL daemon processes, refer to “What are the DPCL daemons?” on
page 13.

The procedure for connecting to the target application differs depending on whether
you are connecting to a serial application, a parallel (non-POE) application, or a
parallel POE application.

 Copyright IBM Corp. 2000 83

If the target application is: The analysis tool connects to it by:

A serial application 1. creating a Process object that identifies the target application process, and

2. calling the Process::bconnect or Process::connect function.

For complete instructions, refer to “Connecting to a serial application” on page 84.
For sample code, refer to “Example: Connecting to a serial application” on page 86.

A parallel application (non-POE) 1. Creating Process objects that identify the target application processes,

2. grouping the Process class objects under an Application object, and

3. calling the Application::connect or Application::bconnect function.

For complete instructions, refer to “Connecting to a non-POE parallel application” on
page 87. For sample code, refer to “Example: Connecting to a non-POE parallel
application” on page 90.

A POE Application 1. Creating an empty PoeAppl object,

2. initializing the PoeAppl object to contain Process objects representing the POE
target application processes, and

3. calling the Application::connect or Application::bconnect function. (The
PoeAppl class is derived from the Application class, so these functions are
available to the PoeAppl object.)

For complete instructions, refer to “Connecting to a POE application” on page 90.
For sample code, refer to “Example: Connecting to a POE application” on page 93.

Connecting to a serial application
To connect to a serial application, the analysis tool must:

1. instantiate a Process object that Identifies the target application process, and

2. call the Process::bconnect or Process::connect function.

The following steps describe these tasks in greater detail. For sample code, see
“Example: Connecting to a serial application” on page 86.

Step 1: Instantiate a Process object that identifies the target
application process
In order to connect to the target application process, the analysis tool must
instantiate a Process object that represents the process. To do this, the analysis
tool must:

1. Identify the host and process ID of the target application process, and

2. using this information, instantiate the Process object

The following substeps describe these tasks in greater detail.

Step 1a: Identify the host and process ID of the target application process:
In order to instantiate a Process object that represents the target application
process, the analysis tool must have some way of identifying the host running this
process and the process ID on that host. The analysis tool could accomplish this in
a number of ways; it could, for example, prompt the user to supply this information
to standard input, or it could read a configuration file that contains the information.

Step 1b: Instantiate a Process object for the target application process: In
order to connect to the target application process, the analysis tool must instantiate
a Process object that represents the process. The Process class is defined in the
header file Process.h. To assign the host name and process ID to a Process
object, you can use a non-default constructor, a non-default constructor with a copy

84 IBM PE for AIX V3R1.0: DPCL Programming Guide

constructor, or the default constructor with an assignment operator. Say the target
application process is currently executing on a host machine whose IP host name
is "myhost.xyz.edu", and the process ID is 12345.

Table 15. Instantiating a Process object

To instantiate a Process class object, the
analysis tool can:

For example:

Use a default constructor and an assignment
operator to assign values to the Process
object.

Process p;
p = Process("myhost.xyz.edu", 12345);

Use a non-default constructor to directly
assign values to the Process object.

Process p("myhost.xyz.edu", 12345);

Use a non-default constructor and a copy
constructor to assign values to the Process
object.

Process p = Process("myhost.xyz.edu", 12345);

When you assign a host name and process ID to a Process object (as shown in the
preceding table), the Process object is in an unconnected state. In other words, it is
just an object allocated by the analysis tool process; it does not yet have a
connection to the particular process indicated by its host and process ID values. In
fact, the DPCL system does not at this point even know if the Process object's host
and process ID values are valid. This unconnected state is represented by the
enumeration constant PRC_unconnected of the Process class' ConnectState
enumeration type. The analysis tool can query a Process object's state by calling
the Process::query_state function.

For more information on the Process class constructor, refer to the IBM Parallel
Environment for AIX: DPCL Class Reference

Step 2: Connect to the target application process
Once the analysis tool has a Process object that represents the target application, it
can connect to it using either the blocking function Process::bconnect, or the
asynchronous function Process::connect.

Table 16. Connecting to a target application process

To connect to a single
target application
process (Process object):

Do this:

Using the blocking function
bconnect

sts = P.bconnect();
 check_status("P.bconnect()", sts);

printf(" %s: connected to pid:%d\n", toolname, P.get_pid());

Using the asynchronous
function connect

AisStatus sts = p->connect(connect_cb, GCBTagType(8));
check_status("p->connect(connect_cb, GCBTagType(8))", sts);

//
// callback to be called after the connect completes
//
void connect_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

 Chapter 6. Connecting to or starting the target application processes 85

By using the Process::connect or Process::bconnect function, the analysis tool
creates a connection to the Process indicated by the Process object's host and
process ID values. When the DPCL system has established a connection between
the analysis tool and a target application process, the analysis tool can instrument it
with probes. This connected state is represented by the enumeration constant
PRC_connected of the Process class' ConnectState enumeration type. The analysis
tool can query a Process object's state by calling the Process::query_state
function.

For more information on the Process::bconnect and Process::connect functions,
refer to their AIX man pages, or their entries in the IBM Parallel Environment for
AIX: DPCL Class Reference.

Example: Connecting to a serial application
The following example code:

� has the user identify the host name and process ID of the target application
thorough command-line arguments.

� instantiates a Process object for the target application process using the host
name and process ID supplied by the user.

� calls the bconnect function to create a DPCL daemon connection to the
process represented by the Process object.

main(int argc, char 0argv[])
{
 Process P(argv[1], atoi(argv[2]));

 Ais_initialize();

printf("Connecting to process %s on node %s\n", argv[2], argv[1]);

AisStatus sts = P.bconnect();

printf ("connect status = %d\n", (int)sts);
if ((int)sts != 8) printf("%s\n", sts.status_name());

.

.

.

Connecting to a parallel application
The procedure for connecting to a parallel application differs depending on whether
or not the application is designed to run in the Parallel Operating Environment.

If the target application is: The analysis tool connects to it by:

A parallel application (non-POE) 1. instantiating Process objects that identify the target application processes

2. grouping the Process class objects under an Application object, and

3. calling the Application::connect or Application::bconnect function.

For complete instructions, refer to “Connecting to a non-POE parallel application” on
page 87. For sample code, refer to “Example: Connecting to a non-POE parallel
application” on page 90.

86 IBM PE for AIX V3R1.0: DPCL Programming Guide

If the target application is: The analysis tool connects to it by:

A POE application 1. Creating an empty PoeAppl object,

2. initializing the PoeAppl object to contain Process objects representing the POE
target application processes, and

3. calling the Application::connect or Application::bconnect function. (The
PoeAppl class is derived from the Application class, so these functions are
available to the PoeAppl object.)

For complete instructions, refer to “Connecting to a POE application” on page 90.
For sample code, refer to “Example: Connecting to a POE application” on page 93.

Connecting to a non-POE parallel application
To connect to a non-POE parallel application, the analysis tool must:

1. instantiate Process objects that identify the target application processes,

2. group the Process objects under an Application object, and

3. call the Application::connect or Application::bconnect function.

The following steps describe these tasks in greater detail. For sample code, see
“Example: Connecting to a non-POE parallel application” on page 90.

Step 1: Instantiate Process objects that identify the target application
processes: In order to connect to the target application processes in the parallel
application, the analysis tool must instantiate Process objects that represent the
processes. Later, the analysis tool will organize these Process objects under an
Application object so that it may treat all the processes as if they were a single
unit. To instantiate Process objects to represent the processes, the analysis tool
must:

1. Identify the host and process ID of each target application process, and

2. instantiate a Process object for each process in the target application.

The following substeps describe these tasks in more detail.

Step 1a: Identify the host and process ID of each process in the target application:
In order to instantiate Process objects that represent the target application
processes, the analysis tool must have some way of identifying the host running,
and the process ID for, each target application process. The analysis tool could
accomplish this in a number of ways; it could, for example, prompt the user to
supply this information to standard input, or it could read a configuration file that
contains this information.

Step 1b: Instantiate a Process object for each process in the target application: In
order to connect to the processes in the target application, the analysis tool must
instantiate Process objects that represent the processes. The Process class is
defined in the header file Process.h. To assign the host name and process ID to a
Process object, the analysis tool can use a non-default constructor, a non-default
constructor with a copy constructor, or the default constructor with an assignment
operator. Say one of the target application processes is currently executing on a
host machine whose IP host name is "myhost.xyz.edu", and the process ID is
12345.

 Chapter 6. Connecting to or starting the target application processes 87

Table 17. Instantiating Process objects for multiple target application processes

To instantiate a Process class object, the
analysis tool can:

For example:

Use a default constructor and an assignment
operator to assign values to the Process
object.

Process p[128];
p = Process("myhost.xyz.edu", 12345);

Use a non-default constructor to directly
assign values to the Process object.

Process p[8]("myhost.xyz.edu", 12345);

Use a non-default constructor and a copy
constructor to assign values to the Process
object.

Process p[8] = Process("myhost.xyz.edu", 12345);

When you assign a host name and process ID to a Process object (as shown in the
preceding table), the Process object is in an unconnected state. In other words, it is
just an object allocated by the analysis tool process; it does not yet have a
connection to the particular process indicated by its host and process ID values. In
fact, the DPCL system does not at this point even know if the Process object's host
and process ID values are valid. This unconnected state is represented by the
enumeration constant PRC_unconnected of the Process class' ConnectState
enumeration type. The analysis tool can query a Process object's state by calling
the Process::query_state function.

For more information on the Process class constructor, refer to the IBM Parallel
Environment for AIX: DPCL Class Reference.

Step 2: Group Process objects under an Application object: By grouping a set
of Process objects under an Application object, the analysis tool is able to treat
the set of Process objects as a single unit. In other words, it need only make a
single call to an Application class member function to act upon all Process objects
managed by that Application object. In this case, we are grouping all of the
parallel target application's Process objects under the Application object. Note,
however, that an Application object can be any grouping of Process objects that
the analysis tool needs to manipulate as a single unit.

To group a set of Process objects under an Application object, the analysis tool
must:

1. Instantiate an Application object, and

2. add the Process objects to the Application object.

The following substeps describe these tasks in greater detail.

Step 2a: Instantiate an Application object: In order to manipulate different
processes in a parallel application, the analysis tool must group them into an
Application object. The Application class is defined in the header file
Application.h.

Table 18. Instantiating an Application object (for connecting to multiple processes)

To instantiate a Application class object,
the analysis tool can:

For example:

Use a default constructor: Application app1;

Use a copy constructor: Application app2 = app1;

88 IBM PE for AIX V3R1.0: DPCL Programming Guide

For more information on the Application class constructor, refer to the IBM Parallel
Environment for AIX: DPCL Class Reference.

Step 2b: Add the Process objects to the Application object: The preceding step
(“Step 2a: Instantiate an Application object” on page 88) showed how the analysis
tool can use the Application class constructor to instantiate an empty Application
object. In order to use this object to manipulate a set of processes as a single unit,
the analysis tool now needs to add the Process objects to the Application object.
It does this using the Application::add_process function. This function takes, as a
parameter, the Process object to be added to the Application object. For example,
the following line of code adds the Process object p to the Application object app1.

for (i=8; i<128; i++){

 app1.add_process(p[i]);

}

For more information on the Application::add_process function, refer its AIX man
page, or its entry in the IBM Parallel Environment for AIX: DPCL Class Reference.

Step 3: Connect to the target application processes: At this point, the analysis
tool has an Application object containing the Process objects that represent the
target application processes. It can now connect to those processes using the
blocking function Application::bconnect, or the asynchronous function
Application::connect.

Table 19. Connecting to multiple target application processes

To connect to all
processes in an
application (all Process
objects managed by an
Application object):

Do this:

Using the asynchronous
function connect

AisStatus sts = a->connect(connect_cb, a);
check_status("a->connect(connect_cb, a)", sts);

//
// callback to be called after the connect completes
//
void connect_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the blocking function
bconnect

sts = A.bconnect();
 check_status("A.bconnect()", sts);

printf(" %s: connected to Application A\n", toolname);

By using the Application::connect or Application::bconnect function, the
analysis tool creates connections to the processes indicated by the host and
process ID values of the various Process objects managed by the Application
object. These connections are achieved through a socket connection from the
analysis tool to the DPCL communication daemon, and shared-memory
communication between the DPCL communication daemon and the target

 Chapter 6. Connecting to or starting the target application processes 89

application process. When the DPCL system has established a connection to the
processes represented by the Process objects managed by the Application object,
the analysis tool can instrument those processes with probes. For each process,
this connected state is represented by the enumeration constant PRC_connected of
the Process class' ConnectState enumeration type. The analysis tool can query a
Process object's state by calling the Process::query_state function.

For more information on the Application::connect and Application::bconnect
functions, refer to their AIX man pages, or their entries in the IBM Parallel
Environment for AIX: DPCL Class Reference.

Example: Connecting to a non-POE parallel application: The following
example code:

� prompts the user to identify the host name and process ID for each of the
target application processes.

� instantiates the Process objects to represent the target application processes
using the host name and process ID information supplied by the user.

� instantiates an Application object and adds the Process objects to it.

� calls the Application::connect function to create a DPCL daemon connection
to the target application processes.

printf("enter number of processes: ");
gets(s);
int np = atoi(s);
if (np <= 8) {
printf("number of processes must be > 8\n");

 return 99;
}
else {
A = new Application;
for (int i=8; i<np; ++i) {
printf("enter hostname: ");

 gets(hostname);
printf("enter PID: ");

 gets(pidstr);
int pid = atoi(pidstr);
Process P(hostname, pid);

 A->add_process(&P);
 }
}

AisStatus sts = A->connect(connect_cb, A);
check_status("A->connect(connect_cb, A)", sts);

//
// callback to be called after the connect completes
//

void connect_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg) {
// code within callback routine can check the status of the operation and
// respond to its completion by, for example, continuing with other work
}

Connecting to a POE application
To connect to a Parallel Operating Environment (POE) application, the analysis tool
must:

1. Instantiate an empty PoeAppl object,

2. initialize the PoeAppl object to contain Process objects representing the POE
target application processes, and

90 IBM PE for AIX V3R1.0: DPCL Programming Guide

3. call the Application::connect or Application::bconnect function. (The
PoeAppl class is derived from the Application class, so these functions are
available to the PoeAppl object.)

For more information on POE, refer to the IBM Parallel Environment for AIX:
Operation and Use, Volume 1, Using the Parallel Operating Environment.

Step 1: Instantiate a PoeAppl object: In order to connect to the target POE
application, the analysis tool must instantiate a PoeAppl object that represents the
POE application. Defined in the header file PoeAppl.h, the PoeAppl class is derived
from the Application class, and provides additional convenience functions specific
to POE applications. The following line of code illustrates how an analysis tool can
instantiate a PoeAppl object using the default constructor.

PoeAppl app1;

The system response for the preceding line of code would be to create an empty
PoeAppl object app1. For more information on the PoeAppl class constructor, refer
to the IBM Parallel Environment for AIX: DPCL Class Reference.

Step 2: Initialize the PoeAppl object to represent the POE target application:
In order to connect to the POE target application processes, the analysis tool must
now initialize the empty PoeAppl object so that it contains Process objects
representing the POE target application processes. Doing so will enable the
analysis tool to manipulate all the processes as though they were a single unit.
Fortunately (as described in “Step 2b: Initialize the PoeAppl object”), the PoeAppl
class provides convenience functions that enable the analysis tool to, in a single
function call, instantiate Process objects and add them to the PoeAppl object.
These convenience functions are the PoeAppl::init_procs function and its blocking
equivalent binit_procs. In order to use either of these functions, however, the
analysis tool must first identify the host and process ID of the POE home process
as described in “Step 2a: Identify the host and process ID of the POE home
process.”

Step 2a: Identify the host and process ID of the POE home process: The next
substep (“Step 2b: Initialize the PoeAppl object”) describes how an analysis tool
can initialize a PoeAppl object so that it contains Process objects representing all of
the processes in the POE target application. In order to use the convenience
functions that perform this initialization, however, the analysis tool must identify:

� the host name of the host where POE was invoked to start the POE application
(called the POE home node).

� the process ID of the poe command invocation on the POE home node (called
the POE home process).

The analysis tool could get this information in a number of ways; it could, for
example, have the user supply this information as command line arguments.

For more information on POE, refer to the IBM Parallel Environment for AIX:
Operation and Use, Volume 1, Using the Parallel Operating Environment.

Step 2b: Initialize the PoeAppl object: In “Step 1: Instantiate a PoeAppl object,” the
analysis tool created an empty PoeAppl object. Now it can initialize this PoeAppl
object so that it contains Process objects that represent the POE target application
processes. This will enable the analysis tool to manipulate all of the POE
application's processes as if they were a single entity. To initialize the PoeAppl

 Chapter 6. Connecting to or starting the target application processes 91

object, the analysis tool needs to call either the PoeAppl::init_procs function, or
its blocking equivalent — the PoeAppl::binit_procs function.

Table 20. Initializing a PoeAppl object to contain Process class objects

To initialize the PoeAppl
object to contain Process
class objects
representing the POE
target application
processes:

Do this:

Using the asynchronous
function init_procs

PoeAppl A;
AisStatus sts = A.init_procs(hostname, pid, init_cb, NULL);
check_status("A.init_procs()", sts);

//
// callback to be called after the connect completes
//
void init_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{
// code with callback routine can check the status of the operation and
// respond to its completion by, for example, continuing with other work

}

Using the blocking function
binit_procs

PoeAppl A;
AisStatus sts = A.binit_procs(hostname, pid);
check_status("A.binit_procs()", sts);
printf("%s: Application has been initialized\n", toolname);

Although the PoeAppl::init_procs and PoeAppl::binit_procs functions create the
Process class objects (representing the processes in the target POE application)
that the PoeAppl object will manage, note that these processes are, at this point, in
an unconnected state. This unconnected state is represented by the enumeration
constant PRC_unconnected of the Process class' ConnectState enumeration type.
The analysis tool can query a Process object's state by calling the
Process::query_state function.

For more information on the PoeAppl::init_procs and PoeAppl::binit_procs
functions, refer to their AIX man pages or their entries in the IBM Parallel
Environment for AIX: DPCL Class Reference

Step 3: Connect to the POE target application's processes: At this point, the
analysis tool should have a PoeAppl object that contains the Process objects that
represent the POE target application processes. Since the PoeAppl class is derived
from the Application class (and therefore has access to all of the Application
class member functions), the analysis tool can now connect to the POE target
application using either the blocking function Application::bconnect or the
asynchronous function Application::connect.

92 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 21. Connecting to multiple POE target application processes

To connect to all
processes in an
application (all Process
objects managed by an
Application object):

Do this:

Using the asynchronous
function connect

AisStatus sts = a->connect(connect_cb, a);
check_status("a->connect(connect_cb, a)", sts);

//
// callback to be called after the connect completes
//
void connect_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the blocking function
bconnect

sts = A.bconnect();
 check_status("A.bconnect()", sts);

printf(" %s: connected to Application A\n", toolname);

By using the Application::connect or Application::bconnect function, the
analysis tool creates connections to the processes indicated by the host and
process ID values of the various Process objects managed by the Application
object.

When the DPCL system has established a connection to the processes represented
by the Process objects managed by the Application object, the analysis tool can
instrument those processes with probes. For each process, this connected state is
represented by the enumeration constant PRC_connected of the Process class'
ConnectState enumeration type. The analysis tool can query a Process object's
state by calling the Process::query_state function.

For more information on the Application::connect and Application::bconnect
functions, refer to their AIX man pages or their entries in the IBM Parallel
Environment for AIX: DPCL Class Reference.

Example: Connecting to a POE application: The following example code:

� instantiates an empty PoeAppl object.

� prompts the user to identify the host name of the POE home node, and the
process ID of the POE home process.

� initializes the PoeAppl object by calling the PoeAppl::binit_procs function, and
passing it the POE home node and POE home process information obtained by
the user.

� calls the Application::connect function to create a DPCL daemon connection
to the target application process.

printf("enter hostname: ");
gets(hostname):
printf("enter pid: ");
gets(pidstr);
pid = atoi(pid);

 Chapter 6. Connecting to or starting the target application processes 93

PoeAppl A;
AisStatus sts = A.binit_procs(hostname, pid);
check_status("A.binit_procs()", sts);
printf("%s: Application has been initialized\n", toolname);

// connect to all the tasks in the POE application

sts = A.bconnect();
check_status("A.bconnect()", sts);
printf("%s: connected to application\n", toolname);

Starting the target application
The procedure for starting the target application process(es) depends on whether
you are starting a serial application, a parallel (non-POE) application, or a parallel
POE application.

If the target application is: The analysis tool can start it by:

A serial application 1. Instantiating a Process class object to represent the process,

2. calling the Process::create or Process::bcreate function to create the process
in a stopped state, and

3. calling the Process::start or Process::bstart function to start execution of the
process.

For complete instructions, refer to “Starting a serial application.”

A parallel application (non-POE) 1. Instantiating Process class objects to represent the target application processes,

2. calling, for each Process object, the Process::create or Process::bcreate
function to create the process in a stopped state,

3. grouping the Process objects under an Application object, and

4. calling the Application::start or Application::bstart function to start
execution of the processes.

For complete instructions, refer to “Starting a non-POE parallel application” on
page 98.

A POE Application 1. Instantiating an empty PoeAppl object,

2. calling the PoeAppl::create or PoeAppl::bcreate function to create the POE
application processes in a stopped state, and

3. calling the Application::start or Application::bstart function to start
execution of the processes. (The PoeAppl class is derived from the Application
class, so these functions are available to the PoeAppl object.)

For complete instructions, refer to “Starting a POE application” on page 101.

Starting a serial application
To start a serial application, the analysis tool must:

1. Instantiate a Process class object to represent the process,

2. call the Process::create or Process::bcreate function to create the process
stopped at its first executable instruction, and

3. call the Process::start or Process::bstart function to start execution of the
process.

The following steps describe these tasks in greater detail.

94 IBM PE for AIX V3R1.0: DPCL Programming Guide

Step 1: Instantiate a Process object
The Process class contains member functions for creating an AIX process stopped
at its first executable instruction, and for starting a process. These are the create
and bcreate functions (described in more detail in “Step 2: Create target application
Process”), and the start and bstart functions (described in more detail in “Step 3:
Start the target application process” on page 96). In order to have access to these
functions, the analysis tool must first instantiate a Process object. To instantiate a
Process object p, the analysis tool code would be:

Process p;

Instantiating a Process object using the default Process class constructor creates a
Process object in a "pre-created" state. Although the Process object is instantiated,
the actual AIX process it will represent is not yet created. This pre-created state is
represented by the enumeration constant PRC_pre_create of the Process class'
ConnectState enumeration type. The analysis tool can query a Process object's
state by calling the Process::query_state function.

Step 2: Create target application Process
In order to create a target application process, the analysis tool must:

1. Identify the executable to run, and the host on which to run it

2. call the Process::create or Process::bcreate function

The following substeps describe these tasks in more detail.

Step 2a: Identify the executable to run and the host on which the process will
run: The next substep describes how the analysis tool can call the
Process::create or Process::bcreate function to create a process on a particular
host. In order to use either of these functions, however, the analysis tool must
supply the absolute path to the executable, and the host name or IP address of the
host machine where the executable will run. The analysis tool can get this
information in a number of ways; it could, for example, prompt the user to supply
this information as input, or it could read a configuration file that contains the
information.

Step 2b: Create the target application process: The analysis tool can create a
target application process using the function Process::create or its blocking
equivalent Process::bcreate. In addition to specifying the full path to the
executable, and the host machine on which it will run, you can also:

� supply arguments that the analysis tool will pass to the executable,

� supply environment variables to affect the executable's run, and

� specify files for redirecting standard input, standard output, and standard error.

 Chapter 6. Connecting to or starting the target application processes 95

Table 22. Creating a target application process

To create the target
application process:

Do this:

Using the asynchronous
function create

sts = P.create(hostname, progname, create_argv, envp,
stdout_cb, (GCBTagType) 8, stderr_cb, (GCBTagType) 8,
create_cb, (GCBTagType) 8);

 check_status("P.create()", sts);

//
// callback to be called after the create completes
//
void create_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the blocking function
bcreate

sts = P.bcreate(hostname, progname, create_argv, envp,
stdout_cb, (GCBTagType) 8, stderr_cb, (GCBTagType) 8);

 check_status("P.bcreate()", sts);
printf(" %s: created pid:%d\n", toolname, P.get_pid());

Using the Process::create or Process::bcreate function, the analysis tool creates
an AIX process where execution has been stopped at the process' first executable
instruction. In this "created" state, the DPCL system has established a connection
that enables the analysis tool to install probes into the process. In DPCL, this state
is represented by the enumeration constant PRC_created of the Process class'
ConnectState enumeration type. The analysis tool can query a Process object's
state by calling the Process::query_state function.

For more information on the Process::create or Process::bcreate functions, refer
to the AIX man pages for these functions, or their entries in the IBM Parallel
Environment for AIX: DPCL Class Reference.

Step 3: Start the target application process
Calling the Process::create or Process::bcreate function, as described in the
proceeding step, will create a process but will stop its execution at the first
executable instruction. This enables the analysis tool code to install probes into the
process (as described in Chapter 9, “Executing probes in target application
processes” on page 143) prior to starting the process. To start a process, the
analysis can use the function Process::start or its blocking equivalent
Process::bstart.

96 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 23. Starting a target application process

To start the target
application process:

Do this:

Using the asynchronous
function start

AisStatus sts = p->start(start_cb, GCBTagType(8));
check_status("p->start(start_cb, GCBTagType(8))", sts);

//
// callback to be called after the start completes
//
void start_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the blocking function
bstart

sts = P.bstart();
 check_status("P.bstart()", sts);

printf(" %s: started pid:%d\n", toolname, P.get_pid());

Starting a target application process using the Process::start or Process::bstart
functions starts execution of the process (which will then have been stopped at the
process' first executable instruction). The Process state is now represented by the
enumeration constant PRC_connected of the Process class' ConnectState
enumeration type. The analysis tool can query a Process object's state by calling
the Process::query_state function.

Starting a parallel application
The procedure for starting parallel application process(es) depends on whether or
not the application was designed to run in the Parallel Operating Environment.

If the target application is: The analysis tool can start it by:

A parallel application (non-POE) 1. Creating Process class objects to represent the target application processes,

2. calling, for each Process object, the Process::create or Process::bcreate
function to create the process in a stopped state,

3. grouping the Process objects under an Application object, and

4. calling the Application::start or Application::bstart function to start
execution of the processes.

For complete instructions, refer to “Starting a non-POE parallel application” on
page 98.

A POE Application 1. Creating an empty PoeAppl object,

2. calling the PoeAppl::create or PoeAppl::bcreate function to create the POE
application processes in a stopped state, and

3. calling the Application::start or Application::bstart function to start
execution of the processes. (The PoeAppl class is derived from the Application
class, so these functions are available to the PoeAppl object.)

For complete instructions, refer to “Starting a POE application” on page 101.

 Chapter 6. Connecting to or starting the target application processes 97

Starting a non-POE parallel application
To start a non-POE parallel application, the analysis tool must:

1. Create Process class objects to represent the target application processes,

2. call, for each Process object, the Process::create or Process::bcreate
function to create the process stopped at its first executable instruction,

3. group the Process objects under an Application object, and

4. call the Application::start or Application::bstart function to start execution
of the processes.

The following steps describe these tasks in greater detail.

Step 1: Instantiate Process objects: The Process class contains member
functions for creating a process stopped at its first executable instruction. These are
the create and bcreate functions and are described in more detail in “Step 2:
Create target application.” In order to have access to these functions, the analysis
tool must first instantiate a Process object for each of the processes in the parallel
application. The following code creates a Process object.

Process p;

Instantiating Process objects using the default Process class constructor creates
the processes in a "pre-created" state. While the Process objects are themselves
created, the actual processes they will represent are not. This pre-created state is
represented by the enumeration constant PRC_pre_create of the Process class'
ConnectState enumeration type. The analysis tool can query a Process object's
state by calling the Process::query_state function.

Step 2: Create target application: In order to create target application processes,
the analysis tool must:

1. Identify the executable file(s) to run, and the host machine(s) on which the
processes will run.

2. For each Process object, call the Process::create or Process::bcreate
function.

The following substeps describe these tasks in more detail.

Step 2a: Identify the executable file(s) to run and the host(s) on which the
processes will run: The next substep describes how the analysis tool can call the
Process::create or Process::bcreate function to create a process on a particular
host. To create the target application processes, the analysis tool code will need to
have each of the Process objects (created in “Step 1: Instantiate Process objects”)
invoke either the create or bcreate function. In order to use either of these
functions, however, the analysis tool must supply the relative or absolute path to
the executable, and the host name or IP address of the host machine where the
executable will run. The analysis tool can get this information in a number of ways;
it could, for example, prompt the user to supply this information to standard input,
or it could read a configuration file that contains this information.

Step 2b: Create the target application processes: To create the target application
processes, the analysis tool code must have each of the Process objects (created
in “Step 1: Instantiate Process objects”) invoke either the create or bcreate

98 IBM PE for AIX V3R1.0: DPCL Programming Guide

function. In addition to specifying the full path to the executable, and the host
machine on which it will run, you can also:

� supply arguments that the analysis tool will pass to the executable,

� supply environment variables to affect the executable's run, and

� specify files for redirecting standard input, standard output, and standard error.

Table 24. Creating multiple target application processes

To create the target
application process:

Do this:

Using the asynchronous
function create

Process P;
Application A;

for (i=8; i<NUM_PROCS; ++i) {
AisStatus sts = P.create(hostname[i], progname[i], create_argv, envp,
stdout_cb, (GCBTagType) 8, stderr_cb (CBGTagType) 8,
create_cb, (GCBTagType) i);

 check_status("P.create()", sts);
 A.add_process(&P);
}

//
// callback to be called after the create completes
//
void create_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{
// code within the callback routine can check the status of the operation and
// respond to its completion by, for example, continuing with other work

}

Using the blocking function
bcreate

//
// create some programs on the specified host and add them to app A
//
Application A;
Process P;

for (i=8; i<NUM_PROCS; i++) {
sts = P.bcreate(hostname[i], progname[i], create_argv, envp,

stdout_cb, (GCBTagType) i, stderr_cb, (GCBTagType) i);
check_status("P.bcreate(hostname, progname, create_argv, envp...)",

 sts);
printf(" %s: created pid[%d]:%d\n", toolname, i, P.get_pid());

sts = A.add_process(&P);
 check_status("A.add_process(&P)", sts);

printf(" %s: added pid[%d]:%d to Application A\n", toolname, i,
 P.get_pid());
}

Using the Process::create or Process::bcreate function, the analysis tool creates
an AIX process where execution has been stopped at the process' first executable
instruction. In this "created" state, the DPCL system has established a connection
that enables the analysis tool to install probes into the process. In DPCL, this state
is represented by the enumeration constant PRC_created of the Process class'
ConnectState enumeration type. The analysis tool can query a Process object's
state by calling the Process::query_state function.

For more information on the parameters to the Process::create or
Process::bcreate functions, refer to the AIX man pages for these functions, or their
entries in the IBM Parallel Environment for AIX: DPCL Class Reference.

 Chapter 6. Connecting to or starting the target application processes 99

Step 3: Group Process objects under an Application object: By grouping a set
of Process objects under an Application object, the analysis tool is able to treat
the set of Process objects as a single unit. In other words, it need only make a
single call to an Application class member function to act upon all Process objects
managed by that Application object. In this case, we are grouping all of the
parallel target application's Process objects under the Application object. Note,
however, that an Application object can be any grouping of Process objects that
the analysis tool needs to manipulate as a single unit.

To group a set of Process objects under an Application object, the analysis tool
must:

1. Create an Application object, and

2. add the Process objects to the Application object.

The following substeps describe these tasks in greater detail.

Step 3a: Instantiate an Application object: In order to manipulate different
processes in a parallel application, the analysis tool must group them into an
Application object. The Application class is defined in the header file
Application.h.

Table 25. Instantiating an Application object (for starting multiple target application processes)

To instantiate a Application class object,
the analysis tool can:

For example:

Use a default constructor: Application app1;

Use a copy constructor: Application app2 = app1;

For more information on the Application class constructor, refer to the IBM Parallel
Environment for AIX: DPCL Class Reference.

Step 3b: Add the Process objects to the Application object: The preceding step
(“Step 3a: Instantiate an Application object”) showed how the analysis tool can use
the Application class constructor to instantiate an empty Application object. In
order to use this object to manipulate a set of processes as a single unit, the
analysis tool now needs to add the Process objects to the Application object. It
does this using the Application::add_process function. This function takes, as a
parameter, the Process object to be added to the Application object. For example,
the following line of code adds the Process object p to the Application object app1.

app1.add_process(p[i]);

For more information on the Application::add_process function, refer to its AIX
man page, or its entry in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Step 4: Start the target application processes: The Process::create and
Process::bcreate functions create a process stopped at its first executable
instruction. This means that all the processes created by the analysis tool in “Step
2: Create target application” on page 98 will be stopped until the analysis tool
explicitly starts them. This enables the analysis tool code to install probes into any
or all of the processes (as described in Chapter 9, “Executing probes in target
application processes” on page 143) prior to starting them. To start the processes,
the analysis tool can use the function Application::start or its blocking equivalent
Application::bstart.

100 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 26. Starting multiple target application processes

To start the target
application processes:

Do this:

Using the asynchronous
function start

sts = A.start(start_cb, (GCBTagType), &A);
check_status("P.start(start_cb, (GCBTagType), &A)", sts);
printf(" %s: started from Application A\n", toolname);

//
// callback to be called after the start completes
//
void start_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the blocking function
bstart

sts = A.bstart();
 check_status("P.bstart()", sts);

printf(" %s: started Application A\n", toolname);

Starting a group of processes using the Application::start or
Application::bstart functions starts execution of the processes (which will have
been stopped at the process' first executable instruction). The state of each
Process object is now represented by the enumeration constant PRC_connected of
the Process class' ConnectState enumeration type. The analysis tool can query a
Process object's state by calling the Process::query_state function.

For more information on the Application::start or Application::bstart
functions, refer to their AIX man pages or their entries in the IBM Parallel
Environment for AIX: DPCL Class Reference

Starting a POE application
To start a Parallel Operating Environment (POE) application, the analysis tool must:

1. instantiate an empty PoeAppl object,

2. call the PoeAppl::create or PoeAppl::bcreate function to create the POE
application processes stopped at their first executable instructions, and

3. call the Application::start or Application::bstart function to start execution
of the processes. (The PoeAppl class is derived from the Application class, so
these functions are available to the PoeAppl object.)

For more information on POE, refer to the IBM Parallel Environment for AIX:
Operation and Use, Volume 1, Using the Parallel Operating Environment.

Step 1: Instantiate a PoeAppl object: The PoeAppl class has member functions
(create and bcreate) that will create all the processes in a given POE application.
In order to have access to these functions, however, the analysis tool must
instantiate a PoeAppl object to represent the POE application. The PoeAppl class is
derived from the Application class, and provides additional convenience functions
specific to POE applications. The following line of code illustrates how an analysis
tool can instantiate a PoeAppl object using the default constructor.

PoeAppl app1;

 Chapter 6. Connecting to or starting the target application processes 101

The system response for the preceding line of code would be to instantiate a
PoeAppl object app1. For more information on the PoeAppl class constructor, refer
to the IBM Parallel Environment for AIX: DPCL Class Reference

Step 2: Create POE target application processes: The PoeAppl class provides
two convenience properties that enable the analysis tool to, in a single function call,
create all the processes in a POE application. These two convenience functions
(PoeAppl::create and PoeAppl::bcreate) also:

� create Process objects to represent each of the POE target application
processes, and adds these Process objects to the PoeAppl object so that the
analysis tool can manipulate them as a single unit.

� establish a connection to the target application processes so that the analysis
tool can insert instrumentation probes into, and remove them from, the
processes.

In order to use the DPCL to run POE jobs, you must understand the POE
execution environment as described in IBM Parallel Environment for AIX: Operation
and Use, Volume 1, Using the Parallel Operating Environment. Briefly, POE is an
execution environment designed to hide, or at least smooth, the differences
between running parallel programs as opposed to serial ones. In addition to a
command-line interface similar to the familiar AIX command prompt, POE provides
a number of environment variables that you can set to influence the operation of
POE and the execution of programs within it. These environment variables control
such things as how machine resources are allocated, and how I/O is handled
between the machine the program is launched from (called the POE home node)
and the parallel tasks. Most of the POE environment variables also have associated
command-line flags that enable you to temporarily override the environment
variable value when invoking POE and your parallel program.

Before you can use the DPCL to run a POE program, the program must already be
set up to run under POE. For information on how to do this, refer to IBM Parallel
Environment for AIX: Operation and Use, Volume 1, Using the Parallel Operating
Environment; the information on running parallel programs using POE appears in
"Chapter 2: Executing Parallel Programs" of that manual. The remainder of this
step refers to POE terms, environment variables, and command-line flags
introduced in this other manual.

Using the function PoeAppl::create, or its blocking equivalent PoeAppl::bcreate,
the analysis tool specifies the POE home node from which the POE program will be
launched, and provides the absolute path to the poe executable command
(/usr/bin/poe). Your analysis tool must supply the absolute path to the poe
command because, although POE supports running an MPI program by either
specifying poe mpi_prog or, simply, mpi_prog, DPCL does not. DPCL supports only
the long form (poe mpi_prog), and so requires the absolute path to the poe
command.

To control POE's execution environment, the PoeAppl::create and
PoeAppl::bcreate functions also have parameters that enable the analysis tool to
set POE environment variables and command line flags. The following table
illustrates the procedure for creating processes in a POE application.

102 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 27. Creating POE target application processes

To create the target
application processes for
a POE application:

Do this:

Using the asynchronous
function create

PoeAppl P;
char 0poename = "/usr/bin/poe";
char 0argvp[] = {poename, appname, NULL};
AisStatus sts = P.create(hostname, poename, argvp, envp,
stdout_cb, (GCBTagType) 8, stderr_cb, (GCBTagType) 8,
create_cb, (GCBTagType) &P);

check_status("P.create()", sts);

//
// callback to be called after the create completes
//

void create_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{
// code within callback routine can check the status of the operation and
// respond to its completion by, for example, continuing with other work

}

Using the blocking function
bcreate

PoeAppl P;
char 0poename = "/usr/bin/poe";
char 0argvp[] = {poename, appname, NULL};
AisStatus sts = P.bcreate(hostname, poename, argvp, envp,
stdout_cb, (GCBTagType) 8, stderr_cb, (GCBTagType) 8);

check_status("P.bcreate()", sts);
printf("%s: application has been created\n", toolname);

Using the PoeAppl::create or PoeAppl::bcreate function, the analysis tool creates
the processes, but suspends them at the process' first executable instruction. In
this "created" state, the DPCL system has established connections to the
processes that enable the analysis tool to install probes into them. In DPCL, this
state is represented by the enumeration constant PRC_created of the Process class'
ConnectState enumeration type. The analysis tool can query a Process object's
state by calling the Process::query_state function.

For more information on the PoeAppl::create and PoeAppl::bcreate functions,
refer to their AIX man pages, or their entries in the IBM Parallel Environment for
AIX: DPCL Class Reference.

Step 3: Start the target application processes: The PoeAppl::create and
PoeAppl::bcreate functions create the POE target application processes stopped at
their first executable instructions. In other words, they create the processes but stop
each of them at their first executable instruction. In DPCL, this state is represented
by the enumeration constant PRC_created of the Process object's ConnectState
enumeration type. The analysis tool can query the state of the Process object by
calling the Process::query_state function.

The processes created by the PoeAppl::create and PoeAppl::bcreate functions
will remain stopped until the analysis tool explicitly starts them. This enables the
analysis tool code to install probes into any or all of the processes (as described in
Chapter 9, “Executing probes in target application processes” on page 143) prior to
starting them.

Since the PoeAppl class is derived from the Application class (and therefore has
access to all of the Application class member functions), the analysis tool can

 Chapter 6. Connecting to or starting the target application processes 103

now start the POE target application processes using the function
Applicaiton::start or its blocking equivalent Application::bstart.

Table 28. Starting POE target application processes

To start the target
application processes:

Do this:

Using the asynchronous
function start

sts = A.start(start_cb, (GCBTagType), &A);
check_status("P.start(start_cb, (GCBTagType), &A)", sts);
printf(" %s: disconnected from Application A\n", toolname);

//
// callback to be called after the start completes
//
void start_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the blocking function
bstart

sts = A.bstart();
 check_status("P.bstart()", sts);

printf(" %s: started Application A\n", toolname);

Starting a group of processes using the Application::start or
Application::bstart functions starts execution of the processes (which will have
been stopped at the process' first executable instruction). The state of each
Process object is now represented by the enumeration constant PRC_connected of
the Process class' ConnectState enumeration type. The analysis tool can query a
Process object's state by calling the Process::query_state function.

For more information on the Application::start or Application::bstart
functions, refer to their AIX man pages or their entries in the IBM Parallel
Environment for AIX: DPCL Class Reference

104 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 7. Controlling execution of target application
processes

There are two relationships that an analysis tool can establish with a target
application process in order to affect its execution. The analysis tool can "connect"
to the process, and, once connected, can also "attach" itself to the process.
Connection (described in detail in Chapter 6, “Connecting to or starting the target
application processes” on page 83) establishes a communication channel to the
host where the process resides and creates the environment within the process that
allows the analysis tool to insert and remove instrumentation probes. Inserting
instrumentation probes enables the analysis tool to indirectly influence the
execution of a target application process.

An analysis tool can connect to processes either by explicitly connecting (by calling
the connect or bconnect function of either the Process or Application class), or by
creating them (by calling the create or bcreate function of either the Process or
PoeAppl class). The connect and bconnect functions place the process(es) in a
connected state represented by the enumeration constant PRC_connected of the
Process class' ConnectState enumeration type. The create and bcreate functions
place the process(es) in a created state represented by the enumeration constant
PRC_created of the Process class' ConnectState enumeration type. A subsequent
call to the start or bstart function will move the process(es) into the
PRC_connected state. In either case, however, a connection has been established
that enables the analysis tool to instrument the target application process(es) with
probes.

When a process is connected (in either the PRC_connected or PRC_created state),
the analysis tool can attach to the process using the attach or battach function of
either the Process or Application class. Attaching to the process enables the
analysis tool to control execution of the process directly. This direct process control
is exclusive — no other analysis tool will be able to attach to the process. The
following sections describe how an analysis tool can:

� attach to one or more connected processes by calling the Process::attach,
Process::battach, Applcation::attach, or Application::battach function.

� suspend process execution by calling the Process::suspend,
Process::bsuspend, Application::suspend, or Application::bsuspend function.

� resume execution of one or more suspended processes by calling the
Process::resume, Process::bresume, Application::resume, or
Application::bresume function.

� detach itself from one or more target application processes whose execution it
no longer needs to control. Since only one analysis tool can be attached to a
process at a time, it is important that your analysis tool detach itself from any
process it no longer needs to control. To do this, the analysis tool uses the
Process::detach, Process::bdetach, Application::detach, or
Application::bdetach function.

The analysis tool can also terminate a process. If the process is in the PRC_created
state, the analysis tool does not need to attach to it in order to terminate its
execution. If the analysis tool has, on the other hand, not created but merely
connected to a remote process, it must attach to the process in order to terminate

 Copyright IBM Corp. 2000 105

it. The analysis terminates one or more processes by calling the Process::destroy,
Process::bdestroy, Application::destroy, or Application::bdestroy function.

Attaching to the target application process(es)
Attaching to a target application process enables an analysis tool to directly control
the execution of the process. This includes resuming and suspending execution of
the process (as described in “Resuming execution of the target application
process(es)” on page 107 and “Suspending execution of the target application
process(es)” on page 108), as well as terminating the process (as described in
“Terminating target application processes” on page 109). Attaching to an
application automatically suspends its execution. This enables the analysis tool to
install probes in the process (as described in Chapter 9, “Executing probes in
target application processes” on page 143) before resuming its execution (as
described in “Resuming execution of the target application process(es)” on
page 107).

In order to attach itself to one or more target application processes, the analysis
tool must be connected to the process(es) as described in “Connecting to the target
application” on page 83. In other words, the Process object must be in either the
PRC_connected or PRC_created state; the analysis tool can query a Process object's
state by calling the Process::query_state function.

To attach to a single process, the analysis tool can use the asynchronous function
Process::attach or its blocking equivalent Process::battach. To attach to
processes on an application-wide basis (for all Process objects managed by an
Application object), the analysis tool can use the functions Application::attach
or Application::battach.

Table 29. Attaching to one or more target application processes

To attach: To a single process (Process object) To multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function attach

AisStatus sts = p->attach(attach_cb,
 (GCBTagType) 8);
 check_status("p->attach(attach_cb,

(GCBTagType) 8)", sts);

//
// callback to be called after the attach
// completes
//
void attach_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

AisStatus sts = a->attach(attach_cb, tag);
 check_status("a->attach(attac_cbh,
 tag)", sts);

//
// callback to be called after the attach
// completes for each Process managed by
// this Application object
//
void attach_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the
blocking
function
battach

sts = P.battach();
 check_status("P.battach()", sts);

printf(" %s: attached to pid:%d\n",
 toolname, P.get_pid());

sts = A.battach();
 check_status("A.battach()", sts);

printf(" %s: attached to A\n",
 toolname);

106 IBM PE for AIX V3R1.0: DPCL Programming Guide

Attaching to a process puts the process in an attached state represented by the
enumeration constant PRC_attached of the Process class' ConnectState
enumeration type. The analysis tool can query a Process object's state by calling
the Process::query_state function.

Once attached to one or more target application processes, the analysis tool can:

� resume execution of the process(es) as described in “Resuming execution of
the target application process(es).”

� suspend execution of the process(es) as described in “Suspending execution of
the target application process(es)” on page 108.

� terminate execution of the process(es) as described in “Terminating target
application processes” on page 109.

Note that only one analysis tool can be attached to a particular process at a time.
For this reason, an analysis tool may want to "detach" itself from a particular
process when it no longer needs to directly control its execution. To do this, see
“Detaching from target application processes” on page 110.

For more information on the Process::attach, Process::battach,
Application::attach, and Application::battach functions, refer to their AIX man
pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Resuming execution of the target application process(es)
When the analysis tool attaches to one or more target application processes (as
described in “Attaching to the target application process(es)” on page 106),
execution of the process(es) is temporarily suspended. By suspending a process
when the analysis tool attaches to it, the DPCL system enables the analysis tool to
perform actions on it before resuming its execution. If the analysis tool were a
debugger, for example, this would enable it to examine the processes state. Also,
an analysis tool could install probes into the target application (as described in
Chapter 9, “Executing probes in target application processes” on page 143) before
resuming its execution. Once the analysis tool has resumed execution of a process,
it can explicitly suspend its execution again as described in “Suspending execution
of the target application process(es)” on page 108.

To resume execution of a single suspended process, the analysis tool can use the
asynchronous function Process::resume or its blocking equivalent
Process::bresume. To resume execution of suspended processes on an
application-wide basis (for all Process objects managed by an Application object),
the analysis tool can use the Application::resume or Application::bresume
functions.

 Chapter 7. Controlling execution of target application processes 107

Table 30. Resuming execution of one or more suspended target application processes

To resume
execution:

Of a single process (Process object) Of multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function resume

AisStatus sts = p->resume(resume_cb,
 GCBTagType(8));
 check_status("p->resume(resume_cb,
 GCBTagType(8))", sts);

//
// callback to be called after the resume
// completes
//
void resume_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

AisStatus sts = A.resume(resume_cb,
 GCBTagType(8));
if (sts.status() != ASC_success) {

printf("A.resume(), status: %s\n",
 sts.status_name());
 return sts;
}

//
// this is called after each process
// resume request has completed
//
void resume_cb(GCBSysType sys, GCBTagType tag,

GCBObjType obj, GCBMsgType msg)
{

AisStatus 0stsp = (AisStatus 0)msg;
if (stsp->status() != ASC_success)

printf("resume_cb, status: %s\n",
 stsp->status_name());
}

Using the
blocking
function
bresume

sts = P.bresume();
 check_status("P.bresume()", sts);

printf(" %s: resumed pid:%d\n",
 toolname, P.get_pid());

AisStatus sts=A.bresume();
return sts;

Note that the process must be attached in order for the analysis tool to resume its
execution. In other words, the Process object must be in the PRC_attached state;
the analysis tool can query a Process object's state by calling the
Process::query_state function.

For more information on the Process::resume, Process::bresume,
Application::resume, or Application::bresume functions, refer to their AIX man
pages, or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference

Suspending execution of the target application process(es)
When the analysis tool attaches to one or more target application processes (as
described in “Attaching to the target application process(es)” on page 106), the
DPCL system automatically suspends execution of the process(es). This enables
the analysis tool to install probes in the process(es) (as described in Chapter 9,
“Executing probes in target application processes” on page 143). When desired,
the analysis tool then resumes execution of the processes as described in
“Resuming execution of the target application process(es)” on page 107. After
execution of a process has been resumed, the analysis tool can suspend it again.

To suspend execution of a single process, the analysis tool can use the
asynchronous function Process::suspend or its blocking equivalent
Process::bsuspend. To suspend execution of processes on an application-wide
basis (for all Process objects managed by an Application object), the analysis tool
can use the Application::suspend or Application::bsuspend functions.

108 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 31. Suspending execution of one or more target application processes

To suspend
execution of:

A single process (Process object) Multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
suspend

AisStatus sts = p->suspend(suspend_cb,
 GCBTagType(8));
 check_status("p->suspend(suspend_cb,
 GCBTagType(8))", sts);

//
// callback to be called after the suspend
// completes
//
void suspend_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

AisStatus sts = A.suspend(suspend_cb,
 GCBTagType(8));

if (sts.status() != ASC_success)
 return sts;

//
// this is called after each process's
// suspend request is done
//
void suspend_cb(GCBSysType sys, GCBTagType tag,

GCBObjType obj, GCBMsgType msg)
{

Process 0pp = (Process 0)obj;
printf("pid %d suspended\n", pp->get_pid());

}

Using the
blocking
function
bsuspend

sts = P.bsuspend();
 check_status("P.bsuspend()", sts);

printf(" %s: suspended pid:%d\n",
 toolname, P.get_pid());

AisStatus sts=A.bsuspend();

// if app status bad, show status by process
if (sts.status() != ASC_success)

for (int i; i<A.get_count; i++)
printf("status for Process[%d]: %s\n",

 i, status(i).status_name);

Note that the process must be attached in order for the analysis tool to suspend its
execution. In other words, the Process object must be in the PRC_attached state;
the analysis tool can query a Process object's state by calling the
Process::query_state function.

For more information on the Process::suspend, Process::bsuspend,
Application::suspend, and Application::bsuspend functions, refer to their AIX
man pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference

Terminating target application processes
When attached to a target application process (in other words, when the Process is
in the PRC_attached state), the analysis tool can terminate execution of the process.
The analysis tool can also terminate a process if it has created the process (in
other words, when the Process is in the PRC_created state). If it has created the
process, the analysis tool does not need to attach to it in order to terminate its
execution. If the analysis tool has, on the other hand, merely connected to a
running process, it must attach to the process in order to terminate it. To determine
if a process is in one of the required states (PRC_created or PRC_attached), the
analysis tool can query its state by calling the Process::query_state function. To
terminate a single target application process, the analysis tool can use the
asynchronous function Process::destroy or its blocking equivalent
Process::bdestroy. To terminate processes on an application-wide basis (for all
Process objects managed by an Application object), the analysis tool can use the
functions Application::destroy or Application::bdestroy. When using any of

 Chapter 7. Controlling execution of target application processes 109

these functions, however, the analysis tool should exercise the same caution it
would use when calling the AIX command kill. Killing selected processes in a
message-passing parallel program, for example, could result in program deadlock
among the remaining processes.

Table 32. Terminating one or more target application processes

To terminate: A single process (Process object) Multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
destroy

AisStatus sts = p->destroy(destroy_cb,
 GCBTagType(8));
 check_status("p->destroy(destroy_cb,
 GCBTagType(8))", sts);

//
// callback to be called after the
// destroy completes
//
void destroy_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

AisStatus sts = a->destroy(destroy_cb, tag);
 check_status("a->destroy(destroy_cb,
 tag)", sts);

//
// callback to be called after the destroy
// completes for each Process managed by
// the Application object
//
void destroy_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

Using the
blocking
function
bdestroy

sts = P.bdestroy();
 check_status("P.bdestroy()", sts);

printf(" %s: destroyed pid:%d\n",
 toolname, P.get_pid());

sts = A.bdestroy();
 check_status("A.bdestroy()", sts);

printf(" %s: destroyed Application A\n",
 toolname);

Destroying a one or more processes as shown in the preceding table places the
Process object(s) in a destroyed state. This state is represented by the enumeration
constant PRC_destroyed of the Process class' ConnectState enumeration type. The
analysis tool can query a Process object's state by calling the
Process::query_state function.

For more information on the Process::destroy, Process::bdestroy,
Application::destroy, or Application::bdestroy functions, refer to their AIX man
pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Detaching from target application processes
An analysis tool does not need to explicitly detach itself from the target application
process. When either the analysis tool process or the target application process
terminates, the attachment will, or course, be broken. However, it is also important
to note that only one analysis tool can be attached to a particular process at a time.
For this reason, an analysis tool may want to detach itself from the process when it
no longer needs to control execution of the process. This enables another analysis
tool to attach to the process.

To detach itself from a single process, the analysis tool can use the asynchronous
function Process::detach or its blocking equivalent Process::bdetach. To detach
itself from processes on an application-wide basis (for all Process objects managed

110 IBM PE for AIX V3R1.0: DPCL Programming Guide

by an Application object), the analysis tool can use the functions
Application::detach or Application::bdetach. Naturally the process must be
attached in order for the analysis tool to detach it. In other words, the Process
object must be in the PRC_attached state; the analysis tool can query a Process
object's state by calling the Process::query_state function.

Table 33. Detaching from one or more target application processes

To detach: From a single process (Process object) From multiple processes (all of the Process
objects managed by an Application object)

Using the
asynchronous
function detach

AisStatus sts = p->detach(detach_cb,
 GCBTagType(8));
 check_status("p->detach(detach_cb,
 GCBTagType(8))", sts);

//
// callback to be called after the
// detach completes
//
void detach_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

AisStatus sts = A.detach(detach_cb,
 GCBTagType(8));
if (sts.status() != ASC_success)
 return sts.status_name();

//
// this is called after each detach request is
// complete
//
void detach_cb(GCBSysType sys, GCBTagType tag,

GCBObjType obj, GCBMsgType msg)
{

AisStatus 0stsp = (AisStatus 0) msg;
Process 0pp = (Process 0)obj;
if (stsp->status() == ASC_success)

printf("pid %d detached\n",
 pp->get_pid());
 else

printf("pid %d not detached\n",
 pp->get_pid());
}

Using the
blocking
function
bdetach

sts = P.bdetach();
 check_status("P.bdetach()", sts);

printf(" %s: detached from pid:%d\n",
 toolname, P.get_pid());

AisStatus sts=A.bdetach();

if (sts.status() != ASC_success)
 return sts;

For more information on the Process::detach, Process::bdetach,
Application::detach, and Application::bdetach functions, refer to their AIX man
pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference

Note that detaching from a target application process does not remove the analysis
tool's connection to the process. The analysis tool will still be able to install and
execute probes within the process.

Example: Controlling execution of target application processes
The following example illustrates how a target application can control execution of
target application processes. Specifically, it illustrates the use of the
Application::bsuspend, Application::bresume, Application::bdetach, and
Application::bdestroy calls. The user passes this analysis tool the host name and
process IDs of the target application processes. The analysis tool:

1. connects and attaches to the processes. Attaching to the processes suspends
their execution.

2. calls a program function to insert point probes into the processes. (See
Chapter 9, “Executing probes in target application processes” on page 143 for
more information on inserting point probes.)

 Chapter 7. Controlling execution of target application processes 111

3. resumes execution of the processes.

Once execution of the processes resumes, the installed point probes collect
information until the user presses a key on the keyboard. The target application
then:

4. suspends execution of the target application processes,

5. removes the point probes, and

6. if the program was compiled with the flag -DLET_RUN, detaches and disconnects
from the target application processes. If the program was not compiled with
-DLET_RUN, the analysis tool terminates the target application processes.

//
// Example DPCL program for bsuspend, bresume, bdetach
// and bdestroy calls.
// Compile with -DLET_RUN if you want the application to
// continue running after instrumenting it.
//

#include <stdlib.h>
#include <stdio.h>
#include <dpcl.h>

AisStatus instrument(Application A);
void insert_probes();
void remove_probes();
void wait_for_keystroke();

main(int argc, char 0argv[])
{
 Application A;
 char hostname[128];
 int pid_list[128];
 int pid_count;

if (argc <3) {
 printf("Usage: %s <hostname> <pid> [pid...]\n", argv[8]);
 exit(-1);
 }

// get the hostname and pids from argv
 //
 strcpy(hostname, argv[1]);
 pid_count=argc-2;

for (int i=8; i<pid_count; i++) {
 pid_list[i] = atoi(argv[i+2]);
 }

 Ais_initialize();

// Call the Process constructor then
// add the processes to the application

 //
for (i=8; i<pid_count; i++) {

 Process p(hostname, pid_list[i]);
 A.add_process(&p);
 }

// call this routine to instrument the application
 //

AisStatus sts = instrument(A);

// very basic error checking
 //

if (sts.status() != ASC_success) {

 // print overall status for application
 //
 printf("Failed with overall status: %s\n", sts.status_name());

112 IBM PE for AIX V3R1.0: DPCL Programming Guide

 // print individual status for processes in application
 //
 for (int i=8; i<A.get_count(); i++)
 printf("status for Process[%d]: %s\n", i, A.status(i).status_name());
 exit(-1);
 }
}

AisStatus instrument(Application A)
{

// connect to the application
 //
 AisStatus sts=A.bconnect();

if (sts.status() != ASC_success) return sts;

// attach to the application
 //
 sts=A.battach();

if (sts.status() != ASC_success) return sts;

// Instrument the application
 //
 insert_probes();

// resume the application
 //
 sts=A.bresume();

if (sts.status() != ASC_success) return sts;

// collect instrumentation until there is user input
 //
 wait_for_keystroke();

// suspend the application
 //
 sts=A.bsuspend();

if (sts.status() != ASC_success) return sts;

// remove the instrumentation
 //
 remove_probes();

// resume the application
 //
 sts=A.bresume();

if (sts.status() != ASC_success) return sts;

#ifdef LET_RUN

// detach from the application
 //
 sts=A.bdetach();

if (sts.status() != ASC_success) return sts;

// let the application go on normally
 //
 sts=A.bdisconnect();

if (sts.status() != ASC_success) return sts;

#else

// let the application go on normally
 //
 sts=A.bdestroy();

if (sts.status() != ASC_success) return sts;

#endif // LET_RUN

 return sts;
}

 Chapter 7. Controlling execution of target application processes 113

// dummy function defs
void insert_probes() {}
void remove_probes() {}
void wait_for_keystroke() {}

114 IBM PE for AIX V3R1.0: DPCL Programming Guide

 Chapter 8. Creating probes

The term probe refers to a software instrumentation code patch that your analysis
tool can insert into one or more target application processes. Probes are created by
the analysis tool, and therefore are custom designed to perform whatever work is
required by the tool. For example, depending on the needs of the analysis tool,
probes could be inserted into the target application to collect and report
performance information (such as execution time), keep track of pass counts for
test coverage tools, or report or modify the contents of variables for debuggers. For
an overview of probes, refer to “What is a probe?” on page 15.

For the purposes of this book, a probe is defined as "a probe expression that may
optionally call functions". A probe expression (described in more detail in “What is a
probe expression?” on page 15) is a simple instruction or sequence of instructions
that represents the executable code to be inserted into the target application. An
analysis tool can create probe expressions to perform conditional control flow,
integer arithmetic, and bitwise operations. For instructions detailing how an analysis
tool can create probe expressions, refer to “Creating probe expressions.”

When more complicated logic is needed (such as iteration, recursion, and complex
data structure manipulation), a probe expression can call functions. Specifically, a
probe expression can call:

� a DPCL system-defined function for sending collected data back to the analysis
tool.

� AIX functions (like getrusage, times, and vtimes).

� functions contained in the target application.

� a C function compiled into an object file called a "probe module". A probe
module (described in more detail in “What is a probe module?” on page 17) is
a compiled object file containing one or more functions written in C. Once an
analysis tool loads a particular probe module into a target application, a probe
expression is able to call any of the functions contained in the module. For
instructions detailing how an analysis tool can do this, see “Creating and calling
probe module functions” on page 136.

The sections that follow (“Creating probe expressions” and “Creating and calling
probe module functions” on page 136) describe how to create probes that can
execute as part of the target application process. For instructions on actually
executing the probes, refer to Chapter 9, “Executing probes in target application
processes” on page 143.

Creating probe expressions
A probe expression (described in more detail in “What is a probe expression?” on
page 15) is a simple instruction or sequence of instructions that represent the
executable code to be inserted into one or more target application processes. A
probe expression is a type of data structure called an abstract syntax tree (a term
we have borrowed from compiler technology). These data structures are called
"abstract syntax trees" (as opposed to simply "syntax trees") because they are
removed from the syntactic representation of the code. Compilers need to create
abstract syntax trees from a program's source code as an intermediary stage

 Copyright IBM Corp. 2000 115

before manipulating and converting the data structure into executable instructions.
Since the DPCL system also needs to create executable instructions (for insertion
into one or more target application processes), it also needs to create these
abstract syntax trees. To create a probe expression, you need to:

1. Determine the basic logic for the probe expression. This is not a task that the
analysis tool code preforms — instead, it is a task that you, the creator of the
analysis tool code, should perform. Creating the probe expression that will
execute in one or more target application processes can be a "building block"
task that involves first creating simple probe expressions and then combining
and sequencing them into a single probe expression that represents the
complete code patch to be inserted into the target application processes. To do
this, it can sometimes be helpful to have a C or pseudocode version of the
basic logic you want to build into the probe expression. This C or pseudocode
version can then serve as a map of the logic you need to create using probe
expressions.

2. Use ProbeExp objects to represent the various parts of the probe expression
logic — the individual "nodes" of the abstract syntax tree — and then combine
and sequence these ProbeExp objects into a final ProbeExp object that
represents the complete code patch to be inserted into the target application
process.

The following steps describe these tasks in greater detail. For sample code, see
“Example: Creating probe expressions” on page 135.

Step 1: Determine basic logic for the probe expression
The next step (“Step 2: Build the probe expression” on page 117) describes how
an analysis tool can create a probe expression that it can later execute within a
target application process. The procedure for creating a probe expression can be a
"building block" task in which smaller probe expressions are eventually combined
and sequenced into the full probe expression.

For example, the analysis tool can create probe expressions representing constant
or variable values, and then combine these into more complex probe expressions
representing simple operations on the values, or function calls that pass the values
as parameters to the function. The analysis tool could then take two of these more
complex probe expressions and combine them into a single probe expression that
represents a sequence of the two existing expressions. Then the analysis tool could
join two such sequences into a longer sequence or combine them into a conditional
statement. And so on, depending on the complexity of the probe logic, until the
analysis tool has a single probe expression representing the full probe logic.

While the procedure for building a probe expression is the topic of the next step
(“Step 2: Build the probe expression” on page 117), you should at this point
determine the basic logic that the probe expression will perform. To adequately do
this, you should understand the programmatic capabilities of probe expressions. A
probe expression can represent:

� a variable or constant data type value. Probe expressions can represent
values of type int or string.

The analysis tool can combine these probe expressions representing values
into probe expressions representing operations or function calls.

116 IBM PE for AIX V3R1.0: DPCL Programming Guide

� an operation. Probe expressions can represent arithmetic operations, bitwise
operations, relational operations, logical operations, assignment operations,
unary address operations, and dereferencing operations.

The analysis tool can combine these probe expressions representing
operations into probe expressions representing more complex operations, a
sequence of instructions, or parts of a conditional statement.

� a sequence of instructions. Probe expressions can represent a sequence of
two existing probe expressions.

The analysis tool can combine these probe expressions into longer sequences
or parts of a conditional statement.

� a function call. Probe expressions can represent a call to:

– the DPCL system-defined function Ais_send (for sending data back to the
analysis tool).

– a function contained in a probe module.

– a function that is already present in the application.

– an AIX system call.

The analysis tool can combine these probe expressions into probe expressions
representing a sequence of instructions or a conditional statement.

� a conditional statement. Probe expressions can represent a conditional
statement. The test condition, the code to execute if the condition tests true,
and the code to execute if the condition tests false are all existing probe
expressions.

The analysis tool can combine these probe expressions representing
conditional statements into more complex conditional statements or a sequence
of instructions.

Since the procedure for creating a full probe expression can be a "building block"
task in which simple probe expressions are combined to form more complex ones,
you might want to sketch out the logic in C code or pseudocode. This will give you
a map for building the probe expression (as described next in “Step 2: Build the
probe expression”).

Step 2: Build the probe expression
Once you have determined the basic logic you want to build into the probe
expression, you can create the analysis tool code that builds the probe expression.
The analysis tool must first create ProbeExp objects to represent the various parts
of the probe expression logic — the individual "nodes" of the abstract syntax tree
— and combine and sequence these ProbeExp objects into a final ProbeExp object
that represents the complete code patch to be inserted into the target application
process. To build a probe expression, the analysis tool can:

� create probe expressions to represent data values. These can be:

 – constant values.

– variable values (including a variable in the target application).

– the actual value of a particular function parameter in the target application.

� create a probe expression to represent operations.

 Chapter 8. Creating probes 117

� combine existing probe expressions into a new probe expression representing
a sequence of instructions.

� combine existing probe expressions into a new probe expression representing
conditional logic.

� create probe expressions to represent function calls. Such a probe expression
can represent a call to:

– the DPCL system-defined function Ais_send (for sending data back to the
analysis tool).

– a function contained in a probe module.

– a function that is already present in the application.

– an AIX system call.

The following substeps describe these tasks in greater detail.

Step 2a: Create probe expressions to represent temporary or
persistent data
Like most programming vehicles, probes require scratch space for both temporary
and persistent data. The DPCL system automatically allocates probe temporary
data each time a probe expression executes, and deallocates the data when the
probe expression completes. Probe persistent data, on the other hand, must be
explicitly allocated by the analysis tool code. “Creating probe expressions to
represent probe temporary data” describes how an analysis tool can use ProbeExp
class constructors to create probe expressions representing temporary data.
“Creating probe expressions to represent persistent data” on page 120 describes
how an analysis tool can explicitly allocate probe persistent data.

Creating probe expressions to represent probe temporary data: The DPCL
system automatically allocates probe temporary data each time the probe
expression is executed, and deallocates the data when the probe expression
completes. Unlike probe persistent data (described next in “Creating probe
expressions to represent persistent data” on page 120), the analysis tool does not
need to explicitly allocate memory for the data. To create a probe expression to
represent temporary data, the analysis tool uses the ProbeExp class constructor to
specify the data type and initial value of the data.

Table 34. Creating probe expressions to represent temporary data

For example, to create a
probe expression pe that
represents this data
type:

And has an initial
value of:

The analysis tool code would be:

int 16 ProbeExp pe32 = ProbeExp(16);

string "jason" ProbeExp pestr = ProbeExp("jason");

For more information on the ProbeExp class constructor, refer to the IBM Parallel
Environment for AIX: DPCL Class Reference.

Creating probe expressions to represent temporary data In the target
application: Using the SourceObj::reference function, the analysis tool is able to
create a probe expression that references a global or static data variable in the
target application. To do this, the analysis tool must navigate the target
application's source code structure to identify the variable of interest. (If you are

118 IBM PE for AIX V3R1.0: DPCL Programming Guide

unfamiliar with SourceObj objects and the concept of source hierarchies, you may
want to refer to “What is the SourceObj class?” on page 48 before reading the
following example code.

The following example code:

1. Calls the Process::get_program_object function to return the top-level source
object (SourceObj object) associated with a process.

2. Identifies the program module that contains the variable. To do this, it uses the
SourceObj::child_count function to initialize a for loop and then, within the for
loop, uses the SourceObj::child and SourceObj::module_name functions to
identify the target module.

3. Calls the SourceObj::bexpand function to expand the module. This enables the
analysis tool to navigate further down the source hierarchy to examine
additional program structure (including global data variables). An analysis tool
could also expand a module using the asynchronous SourceObj::expand
function.

4. Identifies the variable. To do this, the analysis tool code again uses the
SourceObj::child_count function to initialize a for loop, and then, within the
for loop, uses the SourceObj::child and SourceObj::get_variable_name
functions to identify the target variable.

5. Calls the SourceObj::reference function to create a probe expression that
represents the variable.

#include <dpcl.h>
#include <libgen.h> // for basename()
// find the variable variable_name defined in the module module_name
// for a given Process p
// return: SourceObj contains the variable.
// or src_type()==SOT_unknown_type if the variable not found
SourceObj find_variable(Process p,

char 0 module_name,
char 0 variable_name)

{
// get the source object associated with a process
SourceObj progobj = p.get_program_object();
SourceObj ret; // return variable
SourceObj mod; // module object

// identifies the program module that contains the variable
// we preallocate a buffer to hold the module name

 int mod_name_length=1824;
char 0 mod_name = new char [mod_name_length];

 int mod_index;
for(mod_index = 8;mod_index < progobj.child_count();mod_index++) {
mod = progobj.child(mod_index);

// enlarge the name buffer if necessary.
if (mod.module_name_length() >= mod_name_length) {
// double the length
while(mod_name_length < mod.module_name_length()) mod_name_length0=2;
delete [] mod_name;
mod_name = new char [mod_name_length];

} /0 endif 0/

// get the module name
 mod.module_name(mod_name,mod_name_length);

// depending on how the target application was compiled, the module
// name may contain path information; for purposes of illustration, we compare
// against the basename only.
if (8 == strcmp(basename(mod_name),module_name)) { // found

 break;

 Chapter 8. Creating probes 119

} /0 endif 0/
 }

delete [] mod_name;
if(mod_index == progobj.child_count()) // module not found

 return ret;
// now we need to expand the module's SourceObj if necessary.
// since only one module needs to expand, bexpand() will be easier
if(mod.child_count() == 8) { //
AisStatus sts = mod.bexpand(p);
if(sts.status()!=ASC_success) // expand failed

 return ret;
 }

// preallocate the variable buffer to hold the variable
 int var_name_length=1824;

char 0 var_name = new char [var_name_length];
 SourceObj var;

for (int i=8; i<mod.child_count(); i++) {
var = mod.child(i);

 if(var.src_type()!=SOT_data) continue;
if (var.get_variable_name_length() >= var_name_length) {
while(var_name_length < var.get_variable_name_length())

 var_name_length0=2;
delete [] var_name;
var_name = new char [var_name_length];

} /0 endif 0/
 var.get_variable_name(var_name,var_name_length);

if(8 == strcmp(var_name,variable_name)) { // found the variable
ret = var;

 break;
 }

} /0 endfor 0/
delete [] var_name;

 return ret;
}

main() {
 Process p;
 // ...

SourceObj var = find_variable(p,"hello.c","var");
if(var.src_type() == SOT_unknown_type) {
// error report

 }
ProbeExp pevar = var.reference();

}

Creating probe expressions to represent persistent data: Unlike temporary
data, probe persistent data must be explicitly allocated and deallocated by the
analysis tool code. If your analysis tool code requires probe data to be persistent
from one invocation of the probe to the next, it must allocate memory within the
target application process(es). To create a probe expression to allocate persistent
data in a single process, the analysis tool can use the Process::alloc_mem or its
blocking equivalent Process::balloc_mem. To create a probe expression to allocate
persistent data on an application-wide basis (for all Process objects managed by
the Application object), the analysis tool can use the functions
Application::alloc_mem or Application::balloc_mem.

120 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 35. Allocating memory in one or more target application processes

To create a
probe
expression to
allocate
persistent
data in:

A single process (Process object) Multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
alloc_mem

int initval=8;
ProbeExp pe = P.alloc_mem(int32_type(),
 &initval, malloc_cb,

(GCBTagType) 8, sts);
if (sts.status() != ASC_success)
printf("alloc_mem error: %s\n",

 sts.status_name());
else
 Ais_main_loop();

void malloc_cb(GCBSysType s, GCBTagType t,
GCBObjType o, GCBMsgType m) {

AisStatus 0stsp = (AisStatus 0) m;
if (stsp->status() != ASC_success)
printf("malloc error: %s\n",

 stsp->status_name());

}

int count = A.get_count();
int initval=8;
ProbeExp pe = A.alloc_mem(int32_type(),
 &initval,app_cb,&count,sts);
if(sts.status() != ASC_success){

printf("alloc_mem: Highest error is %s\n",
 sts.status_name());
}
for(i = 8; i < A.get_count(); i++) {
 if(A.status(i).status()!=ASC_success){

count -= 1;
 }
}
if(count) Ais_main_loop();

//...

void app_cb(GCBSysType s, GCBTagType t,
GCBObjType o, GCBMsgType m) {

int0 count = (int 0) t;
AisStatus 0 stsp = (AisStatus 0) m;
if(stsp->status() != ASC_success) {
// print error

 }
0count -= 1;
if(0count == 8) Ais_end_main_loop();

}

Using the
blocking
function
balloc_mem

int initval=8;
ProbeExp pe = P.balloc_mem(int32_type(),
 &initval, sts);
if (sts.status() != ASC_success)
printf("balloc_mem error: %s\n",

 sts.status_name());

int initval=8;
ProbeExp pe = A.balloc_mem(int32_type(),
 &initval,sts);
if(sts.status() != ASC_success) {
 printf("balloc_mem: %s\n",sts.status_name());
for(int i=8;i<A.get_count();i++) {

 if(A.status(i).status()!=ASC_success){
// print error

 }
 }
}

Keep in mind that, as with traditional programming, if your code allocates memory,
it must later free that memory or it will create a memory leak. To create a probe
expression that frees memory in a single process, the analysis tool can use the
Process::free_mem function or its blocking equivalent Process::bfree_mem. To
create a probe expression that frees memory on an application-wide basis (in all
Process objects managed by an Application object), the analysis tool can use the
functions Application::free_mem and Application::bfree_mem.

 Chapter 8. Creating probes 121

Table 36. Deallocating memory in one or more target application processes

To create a
probe
expression to
deallocate
persistent
data in:

A single process (Process object) Multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
free_mem

int count = 1;
sts = P.free_mem(pexp,proc_cb,&count);
if(sts.status() != ASC_success){

printf("free_mem error %s\n",
 sts.status_name());

count -= 1;
}
if(count) Ais_main_loop();

// ...

void proc_cb(GCBSysType s, GCBTagType t,
GCBObjType o, GCBMsgType m) {

int0 count = (int 0) t;
AisStatus 0 stsp = (AisStatus 0) m;
if(stsp->status() != ASC_success) {
// print error

 }
0count -= 1;
if(0count == 8) Ais_end_main_loop();

}

int count = A.get_count();
AisStatus sts = A.free_mem(pexp,app_cb,&count);
if(sts.status() != ASC_success){

printf("free_mem: error is %s\n",
 sts.status_name());
}
for(i = 8; i < A.get_count(); i++) {
 if(A.status(i).status()!=ASC_success){

count -= 1;
 }
}
if(count) Ais_main_loop();

// ...

void app_cb(GCBSysType s, GCBTagType t,
GCBObjType o, GCBMsgType m) {

int0 count = (int 0) t;
AisStatus 0 stsp = (AisStatus 0) m;
if(stsp->status() != ASC_success) {
// print error

 }
0count -= 1;
if(0count == 8) Ais_end_main_loop();

}

Using the
blocking
function
bfree_mem

AisStatus sts = P.bfree_mem(pexp);
if(sts.status() != ASC_success) {
 printf("bfree_mem: %s\n",sts.status_name());
}

AisStatus sts = A.bfree_mem(pexp);
if(sts.status() != ASC_success) {
 printf("bfree_mem: %s\n",sts.status_name());
for(int i=8;i<A.get_count();i++) {

 if(A.status(i).status()!=ASC_success){
// print error

 }
 }
}

For more information on the functions described in the tables above, refer to their
AIX man pages or their entries in the IBM Parallel Environment for AIX: DPCL
Class Reference.

Creating probe expressions to represent actual function parameter values in
the target application: Using the ProbeType::get_actual function, the analysis
tool can create a probe expression that represents the actual value of a particular
function parameter in the target application. When executed within the target
application, the probe expression will determine the actual value of the parameter
at that point in time. If the analysis tool were a debugger, for example, it might want
to display this information to the user. The probe expression representing the
actual parameter value can then be combined into a more complex probe
expression that determines the actual parameter value and sends that information
back to the analysis tool which displays it to the user.

In order to use the ProbeType::get_actual function, the analysis tool must first
create a ProbeType object (using the ProbeType::function_type function) that
represents the prototype (or type signature) of the function. The DPCL system

122 IBM PE for AIX V3R1.0: DPCL Programming Guide

needs to know this type information in order to correctly identify an actual
parameter value for the function; if the ProbeType object created using the
ProbeType::function_type function does not match the function prototype in the
target application, the ProbeType::get_actual function will not return the correct
information.

The following example code calls the ProbeType::function_type function to create
a ProbeType object that represents a function prototype. This example then uses
the ProbeType::get_actual function to create a probe expression that represents
the actual parameter value of one of the function's parameters.

// create a prototype for a function that has an two arguments: and int
// and a pointer to int; and has no return value

ProbeType pr_args[2];
pr_args[8] = int32_type();
pr_args[1] = pointer_type(int32_type());
ProbeType proto = function_type(void_type(), 2, pr_args);

// create a probe expression representing the first parameter in a call
// to a function having this prototype

ProbeExp ap = proto.get_actual(8);

“Creating a probe expression to represent a call to the Ais_send function” on
page 130 expands on this example to show how an analysis tool can create a
probe to send the actual parameter information back to the analysis tool.

For more information on the ProbeType object, refer to “What is the ProbeType
class?” on page 55. For more information on the ProbeType::function_type or
ProbeType::get_actual function, refer to the function's AIX man page or the IBM
Parallel Environment for AIX: DPCL Class Reference

Step 2b: Create probe expressions to represent operations
Writing the analysis tool code that creates probe expressions representing
operations is a fairly straightforward task. This is because the ProbeExp class has
overloaded common operators so that expressions written within the context of the
class do not execute locally, but instead call member functions that create the
probe expression. For example, the following line of code:

ProbeExp pe3 = pe1 + pe2;

creates the probe expression pe3 which represents the addition of probe
expressions pe1 and pe2. With the exception of the simple assignment operator (=),
and the unary address operator (&), the ProbeExp class has overloaded all of the
C++ operators in this way. This includes arithmetic operators (+, -, 0, /, %), bitwise
operators (<<, >>, ˜, ^, &, |), relational operators (<, >, ==, !=, <=, >=), logical
operators (&&, ||, !), assignment operators (+=, -=, 0=, /=, %=, <<=, >>=, ^=, &=, |=),
and dereference operators (0, []). Whenever any of these operators are used
within the context of a probe expression, they create a probe expression that
represents the operation. The operands can either be objects in memory, or probe
expressions that evaluate to values. This means that a probe expression
representing an operation could itself be used as an operand when creating
another probe expression.

As already mentioned, the two operators that are not overloaded by the ProbeExp
class are the simple assignment operator (=) and the unary address operator (&).
So these two operators retain their original semantics — "pe2 = pe1" performs the

 Chapter 8. Creating probes 123

assignment of probe expression pe1 into probe expression pe2 within the analysis
tool, and "&pe1" takes the address of the probe expression pe1 within the analysis
tool. Instead of overloading the = and & operators, the ProbeExp class instead
provides the member functions assign and address. For example, the following line
of code:

ProbeExp pea = pe1.assign(pe2);

creates a probe expression that assigns the value computed by the probe
expression pe2 into the storage location indicated by pe1, and this next line of
code:

ProbeExp peb = pe.address();

creates a probe expression peb that represents the address of the probe expression
pe.

The following tables outline the various operations that can be represented in probe
expressions. Be aware that not all of the operator functions summarized in these
tables are compatible with all operator types. For more information on any of the
functions listed in these tables (including information on which types are valid for
each overloaded operator function), refer to theIBM Parallel Environment for AIX:
DPCL Class Reference.

Table 37. Creating probe expressions to represent arithmetic operations

Operation: Operator: For example, this code: Creates a probe expression exp
that represents the:

Addition + ProbeExp exp = lhs + rhs; addition of lhs and rhs.

Subtraction - ProbeExp exp = lhs - rhs; subtraction of rhs from lhs.

Multiplication * ProbeExp exp = lhs 0 rhs; multiplication of lhs and rhs.

Division / ProbeExp exp = lhs / rhs; division of lhs by rhs.

Modulus % ProbeExp exp = lhs % rhs; integer division of lhs by rhs in
which the remainder rather than
the dividend is returned.

Table 38. Creating probe expressions to represent bitwise operations

Operation: Operator: For example, this code: Creates a probe expression exp
that represents the:

Bitwise AND & ProbeExp exp = lhs & rhs; bitwise AND of lhs and rhs.

Bitwise Inclusive
OR

| ProbeExp exp = lhs | rhs; bitwise inclusive OR of lhs and
rhs.

Bitwise Exclusive
OR

^ ProbeExp exp = lhs ^ rhs; bitwise exclusive OR of lhs and
rhs.

Bitwise Left Shift << ProbeExp exp = lhs << rhs; bitwise left shift of lhs by rhs
places.

Bitwise Right Shift >> ProbeExp exp = lhs >> rhs; bitwise right shift of lhs by rhs
places.

Complement
(bitwise inversion)

˜ ProbeExp exp = ˜ rhs; bitwise inversion of rhs.

124 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 39. Creating probe expressions to represent logical operations

Operation: Operator: For example, this code: Creates a probe expression exp
that represents the:

Logical AND && ProbeExp exp = lhs && rhs; logical AND of rhs and lhs.

Logical OR || ProbeExp exp = lhs || rhs; logical OR of lhs and rhs.

Logical Negation ! ProbeExp exp = ! rhs; logical negation of rhs.

Table 40. Creating probe expressions to represent relational operations

Operation: Operator: For example, this code: Creates a probe expression exp
that represents the:

Equality
Comparison

== ProbeExp exp = lhs == rhs; comparison of lhs and rhs where
1 will be returned if the values are
equal and 0 will be returned if they
are not.

Inequality
Comparison

!= ProbeExp exp = lhs != rhs; comparison of lhs and rhs where
0 will be returned if the values are
equal and 1 will be returned if they
are not.

Greater Than
Comparison

> ProbeExp exp = lhs > rhs; relative size comparison of lhs
and rhs where 1 is returned if lhs
is greater than rhs and 0 is
returned otherwise.

Less Than
Comparison

< ProbeExp exp = lhs < rhs; relative size comparison of lhs
and rhs where 1 will be returned if
lhs is less that rhs and 0 will be
returned otherwise.

Greater Than or
Equal To
Comparison

>= ProbeExp exp = lhs >= rhs; relative size comparison of lhs
and rhs where 1 will be returned if
lhs is greater than or equal to rhs,
and 0 will be returned otherwise.

Less Than or
Equal To
Comparison

<= ProbeExp exp = lhs <= rhs; relative size comparison of lhs
and rhs where 1 will be returned if
lhs is less than or equal to rhs,
and 0 will be returned otherwise.

Table 41 (Page 1 of 2). Creating probe expressions to represent assignment operations

Operation: Operator: For example, this code: Creates a probe expression exp
that:

Assignment None. The =
operator
could not be
overloaded
without
causing
simple
expression
manipulation
to become
unwieldy.
Instead, use
the assign
function

ProbeExp exp = pe1.assign(pe2); represents the assignment of the
value represented by pe2 into the
storage location indicated by pe1.

 Chapter 8. Creating probes 125

Table 41 (Page 2 of 2). Creating probe expressions to represent assignment operations

Operation: Operator: For example, this code: Creates a probe expression exp
that:

Addition
Assignment

+= ProbeExp exp = lhs += rhs; represents the addition of lhs and
rhs and the subsequent
assignment of the result into the
storage location indicated by lhs.

Subtraction
Assignment

-= ProbeExp exp = lhs -= rhs; represents the subtraction of rhs
from lhs and the subsequent
assignment of the result into the
storage location indicated by lhs.

Multiplication
Assignment

*= ProbeExp exp = lhs 0= rhs; represents the multiplication of lhs
and rhs and the subsequent
assignment of the result into the
storage location indicated by lhs.

Division
Assignment

/= ProbeExp exp = lhs /= rhs; represents the division of lhs by
rhs and the subsequent
assignment of the result into the
storage location indicated by lhs.

Modulus
Assignment

%= ProbeExp exp = lhs %= rhs; represents the integer division of
lhs by rhs in which the remainder
rather than the dividend is
returned and is subsequently
assigned into the storage location
indicated by lhs.

Bitwise AND and
Assignment

&= ProbeExp exp = lhs &= rhs; represents a bitwise AND of lhs
and rhs, and the subsequent
assignment of the result into the
storage location indicated by lhs.

Bitwise Inclusive
OR and
Assignment

|= ProbeExp exp = lhs |= rhs; represents a bitwise inclusive OR
of lhs and rhs, and the
subsequent assignment of the
result into the storage location
indicated by lhs.

Bitwise Exclusive
OR and
Assignment

^= ProbeExp exp = lhs ^= rhs; represents a bitwise exclusive OR
of lhs and rhs, and the
subsequent storage of the result
into the storage location indicated
by lhs.

Left Shift and
Assignment

<<= ProbeExp exp = lhs <<= rhs; represents a bitwise left shift of
lhs by rhs places, and the
subsequent storage of the result
into the storage location indicated
by lhs.

Right Shift and
Assignment

>>= ProbeExp exp = lhs >>= rhs; represents a bitwise right shift of
lhs by rhs places, and the
subsequent storage of the result
into the storage location indicated
by lhs.

126 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 42. Creating probe expressions to represent pointer operations

Operation: Operator: For example, this code: Creates a probe expression exp
that represents the:

Address None. The &
operator
could not be
overloaded
because it is
used in
passing
arguments to
functions
that use call
by reference.
Instead, use
the address
function.

ProbeExp exp = pe.address(); referencing of the probe
expression pe.

Dereference * ProbeExp exp = 0 rhs; dereferencing of the pointer value
rhs.

Index and
Dereference

[] ProbeExp exp = lhs [rhs]; addition of rhs to lhs, and the
subsequent dereferencing of the
result.

Once the analysis tool has created a probe expression that represents an
operation, it can:

� Use it as a subexpression in another probe expression representing an
operation.

� Combine the probe expression with another to form a single probe expression
that represents a sequence of the two expressions. For more information, see
“Step 2c: Create probe expressions to represent a sequence of instructions.”

� Combine the probe expression into a probe expression representing a
conditional statement. The probe expression representing the operation could,
in the conditional statement, represent the test condition, the code that
executes if the condition tests true, or the code that executes if the condition
tests false. For more information, see “Step 2d: Create probe expressions to
represent conditional logic” on page 128.

Step 2c: Create probe expressions to represent a sequence of
instructions
The preceding substep (“Step 2b: Create probe expressions to represent
operations” on page 123) illustrates how an analysis tool can create probe
expressions that represent operations. This substep now shows how an analysis
tool can combine two probe expressions into a single probe expression that
represents a sequence of the two operations. Such sequence probe expressions
can then themselves be combined to form even longer sequences of instructions.
To combine two probe expressions into a sequence, the analysis tool uses the
ProbeExp::sequence function. For example, say the logic that an analysis tool wants
to build into a probe expression can be represented in C code as:

pe1 = pe1 + 1;
fcn(pe1);
pe2 = pe1;
send(pe2);

To mimic this logic in a single probe expression, the analysis tool first creates
probe expressions that represent the four basic operations:

 Chapter 8. Creating probes 127

ProbeExp stmt1 = pe1.assign(pe1 + ProbeExp(1));
ProbeExp stmt2 = fcn.call(1, &pe1);
ProbeExp stmt3 = pe2.assign(pe1);
args[8] = Ais_msg_handle;
args[1] = pe2.address();
args[2] = ProbeExp(4);
ProbeExp stmt4 = Ais_send.call(3, args);

Next, these four probe expressions are combined into two probe expressions —
each representing the sequence of two operations.

ProbeExp seq1 = stmt1.sequence(stmt2);
ProbeExp seq2 = stmt3.sequence(stmt4);

Finally, these two sequence probe expressions are combined into a longer
sequence representing the entire probe logic.

ProbeExp seqall = seq1.sequence(seq2);

Once the analysis tool has created a sequence probe expression, it can:

� Repeat this step to combine the sequence probe expression into a longer
sequence.

� Combine the sequence probe expression into a probe expression representing
a conditional statement. The sequence probe expression could be the test
condition, the code that executes if the condition tests true, or the code that
executes if the condition tests false. For more information, see “Step 2d: Create
probe expressions to represent conditional logic.”

Step 2d: Create probe expressions to represent conditional logic
This substep shows how an analysis tool can create a probe expression to perform
conditional logic. To do this the analysis tool:

1. creates probe expressions to represent the test condition, the code to execute
if the condition tests true, and, optionally, the code to execute if the condition
tests false.

2. uses the ProbeExp::ifelse function to combine the three probe expressions
into a probe expression representing a conditional statement.

Using the ProbeExp::ifelse function, the analysis tool is able to mimic an If or
If/Else expression in C.

For example, say the logic that an analysis tool wants to build into a probe
expression can be represented in C code as the If expression:

if (pe1 > 8) send(pe1);

To mimic this logic in a probe expression, the analysis tool first creates probe
expressions to represent the test condition and the code to execute if the condition
tests true.

// first the test condition

ProbeExp ce = pe1 > ProbeExp(8);

// now the then clause

args[8] = Ais_msg_handle;
args[1] = pe1.address();
args[2] = ProbeExp(4);
ProbeExp te = Ais_send.call(3, args);

128 IBM PE for AIX V3R1.0: DPCL Programming Guide

Next, the probe expression representing the test condition calls the ifelse function.
The probe expression to execute if the condition tests true is supplied as a
parameter to the function. The ifelse function returns a single probe expression
that represents the entire conditional statement.

ProbeExp exp = ce.ifelse(te);

So in the above example, if the probe expression ce evaluates to a non-zero value,
the probe expression te executes. If the probe expression ce evaluates to zero,
however, te does not execute. Instead, execution continues past the conditional
statement. In the above example, this entire conditional logic is stored in the
ProbeExp object exp.

The above example illustrates how a probe expression can mimic an If statement.
The analysis tool can also use the ProbeExp::ifelse function to create a probe
expression that mimics an If/Else statement. All it needs to do is supply an
additional parameter to the ifelse function — one representing the code to execute
if the test condition tests false. For example, say the logic that an analysis tool
wants to build into a probe expression can be represented in C code as the
If/Else expression:

if (pe1 > 8)
 send(pe1);
else
 send(pe2);

To mimic this logic in a probe expression, the analysis tool first creates probe
expressions to represent the test condition, the code to execute if the condition
tests true, and the code to execute if the condition tests false.

// first the test condition

ProbeExp ce = pe1 > ProbeExp(8);

// now the then clause

args[8] = Ais_msg_handle;
args[1] = pe1.address();
args[2] = ProbeExp(4);
ProbeExp te = Ais_send.call(3, args);

// and the else clause

args[8] = Ais_msg_handle;
args[1] = pe2.address();
args[2] = ProbeExp(4);
ProbeExp ee = Ais_send.call(3, args);

Next, the probe expression representing the test condition calls the ifelse function.
The probe expression to execute if the condition tests true, and the probe
expression to execute if the condition tests false are both supplied as parameters to
the function. The ifelse function returns a single probe expression that represents
the entire conditional statement.

ProbeExp exp = ce.ifelse(te, ee);

So in the above example, if the probe expression ce evaluates to a non-zero value,
the probe expression te executes. If the probe expression ce evaluates to zero, the
probe expression ee executes. In the above example, this entire conditional logic is
stored in the ProbeExp object exp.

Once the analysis tool has created a conditional probe expression, it can:

 Chapter 8. Creating probes 129

� Repeat this step to include the conditional probe expression as part of a more
complex conditional statement.

� Combine the probe expression with another to form a single probe expression
that represents a sequence of the two expressions. For more information, see
“Step 2c: Create probe expressions to represent a sequence of instructions” on
page 127.

Step 2e: Create probe expressions to represent function calls
This substep shows how an analysis tool can create a probe expression that
represents a function call. The analysis tool can create such a probe expression to
represent a call to:

� the DPCL system-defined function Ais_send. The ability to call this function
enables a probe to send data back to the analysis tool.

� a function contained in a probe module (a compiled object file containing one or
more functions written in C) that has been loaded into the target application
process. For more information on probe modules, refer to “What is a probe
module?” on page 17 and “Creating and calling probe module functions” on
page 136.

� a function that is already present in the target application.

� an AIX function like getrusage, times, or vtimes. The ability to call AIX
functions enables a probe to get performance and system-resource information
for a target application process.

In all four of these situations, the analysis tool uses the ProbeExp::call function to
create a probe expression that represents a function call. For more information on
the ProbeExp::call function, refer to its AIX man page, or its entry in the IBM
Parallel Environment for AIX: DPCL Class Reference.

Once the analysis tool has created a probe expression that represents a function
call, it can:

� Combine the probe expression with another to form a single probe expression
that represents a sequence of the two expressions. For more information, see
“Step 2c: Create probe expressions to represent a sequence of instructions” on
page 127.

� Combine the probe expression into a probe expression representing a
conditional statement. The probe expression representing the function could be
the code that executes if the condition tests true, or the code that executes if
the condition tests false. For more information, see “Step 2d: Create probe
expressions to represent conditional logic” on page 128.

Creating a probe expression to represent a call to the Ais_send function:
The Ais_send function enables a probe to send data back to the analysis tool. The
Ais_send function takes three parameters — a message handle for managing
where the data is sent, the address of the data to send, and the size of the data
being sent. To send the data located at the address &pcount back to the analysis
tool, the call to the Ais_send function, if written in C code, would be:

Ais_send(handle, &pcount, 4);

To mimic this function call in a probe expression, the analysis tool first creates an
array of probe expressions, with each expression in the array representing one of
the parameters to the Ais_send function. As described in “Step 2b: Create probe

130 IBM PE for AIX V3R1.0: DPCL Programming Guide

expressions to represent operations” on page 123, the ProbeExp class did not
overload the unary address operator (&). Note that the following code calls the
ProbeExp::address function to mimic the unary address operator used in the
preceding C code.

ProbeExp parms[3];
parms[8] = Ais_msg_handle;
parms[1] = pcount.address();
parms[2] = ProbeExp (4);

Next the analysis tool creates a probe expression that represents the call to
Ais_send. The parameter values intended for the Ais_send function are passed as
the probe expression array parms to the ProbeExp::call function. The first
parameter to the ProbeExp::call function indicates the number of probe
expressions in the array. In this example, there are three probe expressions in the
array.

ProbeExp sendexp = Ais_send.call(3, parms);

“Creating probe expressions to represent actual function parameter values in the
target application” on page 122 contains example code that shows how the
analysis tool can create a probe expression that, when executed within a target
application process, will determine the actual value of a function parameter at that
point in time. The following example code expands on this earlier example to show
how the analysis tool can create a probe expression that, when executed within a
target application process, will call the Ais_send function to send this actual
parameter information back to the analysis tool.

// allocate an integer variable

ProbeExp v = P.balloc_mem(int32_type(), NULL, sts);

// create a prototype for a function that has an two arguments: and int
// and a pointer to int; and has no return value

ProbeType pr_args[2];
pr_args[8] = int32_type();
pr_args[1] = pointer_type(int32_type());
ProbeType proto = function_type(void_type(), 2, pr_args);

// create a probe expression representing the first parameter in a call
// to a function having this prototype

ProbeExp ap = proto.get_actual(8);

// create a probe expression to copy the value of the actual parameter to
// the variable we allocated and then send that value back

ProbeExp p1 = v.assign(ap);

ProbeExp sendargs[3];
sendargs[8] = Ais_msg_handle;
sendargs[1] = v.address();
sendargs[2] = ProbeExp(4);
ProbeExp p2 = Ais_send.call(3, sendargs);

ProbeExp p3 = p1.sequence(p2);

For more information on the Ais_send function, refer to its AIX man page, or its
entry in the IBM Parallel Environment for AIX: DPCL Class Reference.

Creating a probe expression to represent a call to an AIX function: The
analysis tool can also use the ProbeExp::call function to create a probe
expression that represents a call to an AIX function like getrusage, times, or

 Chapter 8. Creating probes 131

vtimes. The ability to call AIX functions enables a probe to get performance and
system-resource information for a target application process. For example, say that,
in order to get system resource usage for a target application process, the analysis
tool needs to create a probe expression that calls the AIX function getrusage. In C
code, a call to this function would look like:

#include <sys/resources.h>
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);

To mimic this call in a probe expression, the analysis tool first creates an array of
probe expressions, with each expression in the array representing one of the
parameters to the getrusage function.

#include <sys/resources.h>
ProbeExp buf = P.balloc_mem(

unspecified_type(sizeof(struct rusage)), NULL, sts);
if (sts.status() != ASC_success)
printf("balloc_mem error: %s\n", sts.status_name();

else {
 ProbeExp params[2];
params[8] = ProbeExp(RUSAGE_SELF);
params[1] = buf.address();

}

Next the analysis tool creates a probe expression that represents a call to the
getrusage function. In this example, moduleobj is the module in the source tree that
contains the getrusage function, and i is the index of the getrusage function in that
module.

SourceObj getrusage_fcn = moduleobj.child(i);
ProbeExp getrusage_ref = getrusage_fcn.reference();
ProbeExp the_call = getrusage_ref.call(2, params);

For more information about the AIX function getrusage, refer to its AIX man page.

Creating a probe expression to represent a call to a probe module function:
The analysis tool can also use the ProbeExp::call function to create a probe
expression that represents a call to a function contained in a probe module (a
compiled object file containing one or more functions written in C) that has been
loaded into a target application process. Once an analysis tool loads a particular
probe module into a target application process, a probe expression is able to call
any of the functions contained in the module. See “Creating and calling probe
module functions” on page 136 for more information on creating probe modules.

Say that a probe module you have created contains a function count that is
designed to count the number of times the subroutine is called. This probe module
function takes one parameter — the predefined global variable Ais_msg_handle
(which is used by the DPCL system when the probe sends data back to the
analysis tool). In C code, a call to this function would look like:

count(handle);

To mimic this call in a probe expression, the analysis tool:

1. calls the ProbeModule::get_reference function to create a probe expression
that represents a reference to the count function. The analysis tool supplies the
ProbeModule::get_reference function with the index of the count function within
the probe module; the ProbeModule::get_reference function returns a probe
expression representing a reference to the count function. To identify the count

132 IBM PE for AIX V3R1.0: DPCL Programming Guide

function within the probe module, the analysis tool can use the
ProbeModule::get_count and ProbeModule::get_name functions.

char name[128];

ProbeModule pm("my_module");
int fcncount = pm.get_count();
int found = 8;
for (int i=8; !found && i<fcncount; ++i) {
pm.get_name(i, name, 128);
if (strcmp(name, "count") == 8)
found = 1;

 }

if (found == 8)
printf("function 'count' not found in probe module\n");

 else {
ProbeExp count_ref = pm.get_reference(i);

For more information on the ProbeModule::get_reference,
ProbeModule::get_count, and ProbeModule::get_name function, refer to their
AIX man pages, or their entries in the IBM Parallel Environment for AIX: DPCL
Class Reference.

2. creates an array of probe expressions, with each expression in the array
representing one of the parameters to the function. Since the count function
has only one input parameter, this array has only one expression.

ProbeExp parms[1];
parms[8] = Ais_msg_handle;

3. combines these probe expressions (which represent a reference to the probe
module function count and the parameters to supply to that function) into a
single expression that represents the function call. The parameter value
intended for the count function is passed as the probe expression array args to
the ProbeExp::call function. The first parameter to the ProbeExp::call
function indicates the number of probe expressions in the array. In this
example, there is only one probe expression in the array.

ProbeExp the_call = count_ref.call(1, parms);

Creating a probe expression to represent a call to a target application
function:

Using the SourceObj::reference function, the analysis tool is able to create a probe
expression that represents a function in the target application. This probe
expression can then be combined by the analysis tool into a probe expression
representing a call to that function. To create a probe expression that represents a
target application function, however, the analysis tool must first navigate the target
application's source code structure to identify the function of interest. If you are
unfamiliar with SourceObj objects and the concept of source hierarchies, you may
want to refer to “What is the SourceObj class?” on page 48 before reading the
following example code.

The following example code:

1. Calls the Process::get_program_object function to return the top-level source
object (SourceObj object) associated with a process.

2. Identifies the program module that contains the function. To do this, it uses the
SourceObj::child_count function to initialize a for loop and then, within the for

 Chapter 8. Creating probes 133

loop, use the SourceObj::child and SourceObj::module_name functions to
identify the target module.

3. Calls the SourceObj::bexpand function to expand the module. This enables the
analysis tool to navigate further down the source hierarchy to examine
additional program structure (including functions). The analysis tool code could
also expand a module using the asynchronous SourceObj::expand function.

4. Identifies the function. To do this, the analysis tool code again uses the
SourceObj::child_count function to initialize a for loop, and then, within the
for loop, uses the SourceObj::child and SourceObj::get_demangled_name
functions to identify the target function.

5. Calls the SourceObj::reference function to create a probe expression that
represents the function.

6. Uses the ProbeExp::call function to combine the probe expression
representing the function into a more complex probe expression representing a
function call.

#include <dpcl.h>
#include <libgen.h> // for basename()
// find the function function_name defined in the module module_name
// for a given Process p
// return: SourceObj contains the function.
// or src_type()==SOT_unknown_type if the function is not found
SourceObj find_function(Process p,

char 0 module_name,
char 0 function_name)

{
// get the source object associated with a process
SourceObj progobj = p.get_program_object();
SourceObj ret; // return object
SourceObj mod; // module object

// identifies the program module that contains the function
// we preallocate a buffer to hold the module name

 int mod_name_length=1824;
char 0 mod_name = new char [mod_name_length];

 int mod_index;
for(mod_index = 8;mod_index < progobj.child_count();mod_index++) {
mod = progobj.child(mod_index);

// enlarge the name buffer if necessary.
if (mod.module_name_length() >= mod_name_length) {
// double the length
while(mod_name_length < mod.module_name_length()) mod_name_length0=2;
delete [] mod_name;
mod_name = new char [mod_name_length];

} /0 endif 0/

// get the module name
 mod.module_name(mod_name,mod_name_length);

// depending on how the target application was compiled, the module
// name may contain path information; for purposes of illustration, we compare
// against the basename only.
if (8 == strcmp(basename(mod_name),module_name)) { // found

 break;
} /0 endif 0/

 }
delete [] mod_name;
if(mod_index == progobj.child_count()) // module not found

 return ret;
// now we need to expand the module's SourceObj if necessary.
// since only one module needs to expand, bexpand() will be easier
if(mod.child_count() == 8) { //
AisStatus sts = mod.bexpand(p);
if(sts.status()!=ASC_success) // expand failed

134 IBM PE for AIX V3R1.0: DPCL Programming Guide

 return ret;
 }

// preallocate the function buffer to hold the function name
 int fun_name_length=1824;

char 0 fun_name = new char [fun_name_length];
 SourceObj fun;

for (int i=8; i<mod.child_count(); i++) {
fun = mod.child(i);

 if(fun.src_type()!=SOT_function) continue;
if (fun.get_demangled_name_length() >= fun_name_length) {
while(fun_name_length < fun.get_demangled_name_length())

 fun_name_length0=2;
delete [] fun_name;
fun_name = new char [fun_name_length];

} /0 endif 0/
 fun.get_demangled_name(fun_name,fun_name_length);

if(8 == strcmp(fun_name,function_name)) { // found the function
ret = fun;

 break;
 }

} /0 endfor 0/
delete [] fun_name;

 return ret;
}

main() {
 Process p;
 //

SourceObj fun = find_function(p,"hello.c","foo");
if(fun.src_type() == SOT_unknown_type) {
// error report

 }
ProbeExp foo = fun.reference();

 ProbeExp parms[1];
 // parms[8]=...
 ProbeExp the_call=foo.call(1,parms);
}

Example: Creating probe expressions
The following sample code creates a probe expression pass counter. To do this, it:

1. Calls the Application::balloc_mem function to allocate a variable in all
processes in the application. The result of this call is a probe expression pcount
that represents the variable.

2. Combines the probe expression pcount into a more complex probe expression
addexp that represents the operation pcount = pcount + 1;.

3. Creates another probe expression that represents an Ais_send function call that
sends the value of pcount back to the analysis tool.

4. Combines the two probe expressions into a single probe expression that
represents a sequence of the two expressions.

Since this example uses the Ais_send function, note that it also provides a data
callback routine for handling the data sent. Refer to Chapter 10, “Creating data
callback routines” on page 167 for more information on data callback routines.

// define a pass-counter probe

ProbeExp pcount = A.balloc_mem(int32_type(), NULL, sts);
if (sts.status() != ASC_success)
printf("error from balloc_mem: %s\n", sts.status_name());

 else {
ProbeExp addexpr = pcount.assign(pcount + ProbeExp(1));

 ProbeExp parms[3];
parms[8] = Ais_msg_handle;

 Chapter 8. Creating probes 135

parms[1] = pcount.address();
parms[2] = ProbeExp(4);
ProbeExp send_call = Ais_send.call(3, parms);
ProbeExp pass_ctr = addexpr.sequence(send_call);

// install the probe

 GCBFuncType cbarr[1];
 GCBTagType tagarr[1];
 ProbeHandle ph;

cbarr[8] = count_cb;
tagarr[8] = (GCBTagType) 8;

// assume that point has already been set

sts = A.binstall_probe(1, &pass_ctr, &point, cbarr, tagarr, &ph);
if (sts.status() != ASC_success)
printf("error from binstall_probe: %s\n", sts.status_name());

 .
 .
 .
} // end of program

// the callback function

void count_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{
Process 0P = (Process 0) obj;
int 0count = (int 0) msg;
int task = P->get_task();

printf("task %d count = %d\n", task, 0count);
}

Creating and calling probe module functions
A probe module is a compiled object file containing one or more functions written in
C. Once an analysis tool loads a particular probe module into a target application, a
probe expression is able to call any of the functions contained in the module. It is
often preferable for a probe expression to call a probe module function rather than
try to create the same probe logic with probe expressions alone. This is because
probe modules:

� can be reused by other analysis tools.

� enable you to code the probe logic in a straightforward way using C. For
complicated probe logic this can be easier than the process of building an
abstract syntax tree of probe expressions (as described in “Creating probe
expressions” on page 115).

� can contain more complicated probe logic than is possible is a simple probe
expression.

In addition to these advantages, be aware that, if the probe is to be executed as a
phase probe, than its logic must be contained in a probe module function. This is
because phase probes, unlike point probes and one-shot probes, cannot be a
simple probe expression that does not call a probe module function. To create a
probe module and call one of its functions, you must:

1. Create the probe module function.

2. Compile the probe module.

136 IBM PE for AIX V3R1.0: DPCL Programming Guide

3. Instantiate a ProbeModule class object to represent the probe module.

4. Load the probe module into one or more processes.

5. Create a probe expression to call the probe module function(s).

6. Create a data callback function to respond to any data message that can be
sent by the probe.

The following steps describe these tasks in more detail. For sample code, see
“Example: Creating and calling a probe module function” on page 140.

Step 1: Create probe module function
The first step in creating and calling a probe module function is to write the actual
function. To send data back to the analysis tool, the probe module can call the
built-in DPCL function Ais_send. The Ais_send function takes three parameters —
a message handle for managing where the data is sent, the address of the data to
send, and the size of the data being sent. In order to make the prototype of the
Ais_send function available to the compiler, your analysis tool code should include
the header file dpclExt.h.

For example, the following probe module function is a generic pass counter that,
when installed within a subroutine in a target application process, will count the
number of times the subroutine is called. Each time the counter is incremented 10
times, the probe will call the Ais_send function to send a message back to the
analysis tool.

#include <dpclExt.h>

count(void 0msg_handle)
{
static int pcount = 8;

 char msg[188];

 pcount++;

if ((pcount % 18) == 8)
 {

sprintf(msg, "I have been called %d times\n", pcount);
Ais_send(msg_handle, (void 0) msg, 1 + strlen(msg));

 }
}

If your probe module function calls the Ais_send function as in this example, your
analysis tool code will need to include a data callback routine to respond to data
sent by the probe module. Refer to Chapter 10, “Creating data callback routines”
on page 167 for more information on data callback routines. For more information
on the Ais_send function, refer to its AIX man page, or its entry in the IBM Parallel
Environment for AIX: DPCL Class Reference.

Step 2: Compile the probe module
Once you have written your probe module function, you'll need to compile it into an
object file. This object file is the probe module. Before compiling the probe module,
you'll need to create an export file to export its functions. What's more, if the probe
module function calls any functions outside of the probe module, you'll need to
create an import file. For example, in the preceding step, we encapsulated a simple
pass counter into a function called count. Here's our export file:

 Chapter 8. Creating probes 137

0 Any line started with a '0' is a comment
0 We have a single function to export
count

Also, since the count function calls the built-in DPCL function Ais_send, we also
create an import file:

#! .
Ais_send

Finally, we compile the file. Our export file is named count.exp, and our import file
is named count.imp.

cc -o count count.c -bE:count.exp -bI:count.imp -bnoentry -I/usr/lpp/ppe.dpcl/include

Step 3: Instantiate a ProbeModule class object to represent the probe
module

In order to load a probe module into one or more target application processes, the
analysis tool must create a ProbeModule class object that represents the probe
module. The probe module class is defined in the header file ProbeModule.h. To
assign a probe module file name to a ProbeModule class object, you can use a
non-default constructor, a non-default constructor with a copy constructor, or the
default constructor with an assignment operator.

Table 43. Instantiating a ProbeModule object

To create a ProbeModule class object, the
analysis tool can:

For example:

Use a default constructor and an assignment
operator to assign the file name of the probe
module to the ProbeModule object.

ProbeModule my_probe_mod;
my_probe_mod = ProbeModule("count");

Use a non-default constructor to directly
assign the file name of the probe module to
the ProbeModule object.

ProbeModule my_probe_mod("count");

Use a non-default constructor and a copy
constructor to assign the file name of the
probe module to the ProbeModule object.

ProbeModule my_probe_mod = ProbeModule("count");

For more information on the probe module class and its constructors, refer to the
IBM Parallel Environment for AIX: DPCL Class Reference.

Step 4: Load probe module into Process class object(s)
In order for a probe expression to call a probe module function, the probe module
function must be loaded into the same target application process(es) within which
the probe expression will execute. To load a probe module on a single process
basis, the analysis tool can use the asynchronous function Process::load_module
or its blocking equivalent Process::bload_module. To load a probe module on an
application-wide basis (for all Process objects managed by an Application object),
the analysis tool can use the functions Application::load_module or
Application::bload_module.

138 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 44. Loading a probe module into one or more target application processes

To load a
probe
module:

In a single process (Process object) In multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
load_module

int count = 1;
sts = P.load_module(&pmodule,proc_cb,&count);
if(sts.status() != ASC_success){

printf("load_module error %s\n",
 sts.status_name());

count -= 1;
}
if(count) Ais_main_loop();

// ...

void proc_cb(GCBSysType s, GCBTagType t,
GCBObjType o, GCBMsgType m) {

int0 count = (int 0) t;
AisStatus 0 stsp = (AisStatus 0) m;
if(stsp->status() != ASC_success) {
// print error

 }
0count -= 1;
if(0count == 8) Ais_end_main_loop();

}

int count = A.get_count();
AisStatus sts = A.load_module(&pmodule,app_cb,
 &count);
if(sts.status() != ASC_success){

printf("load_module: error is %s\n",
 sts.status_name());
}
for(i = 8; i < A.get_count(); i++) {
 if(A.status(i).status()!=ASC_success){

count -= 1;
 }
}
if(count) Ais_main_loop();

void app_cb(GCBSysType s, GCBTagType t,
GCBObjType o, GCBMsgType m) {

int0 count = (int 0) t;
AisStatus 0 stsp = (AisStatus 0) m;
if(stsp->status() != ASC_success) {
// print error

 }
0count -= 1;
if(0count == 8) Ais_end_main_loop();

}

Using the
blocking
function
bload_module

AisStatus sts = P.bload_module(&pmodule);
if(sts.status() != ASC_success) {
 printf("bload_module: %s\n",
 sts.status_name());
}

AisStatus sts = A.bload_module(&pmodule);
if(sts.status() != ASC_success) {
 printf("bload_module: %s\n",sts.status_name());
for(int i=8;i<A.get_count();i++) {

 if(A.status(i).status()!=ASC_success){
// print error

 }
 }
}

For more information on the Process::load_module, Process::bload_module,
Application::load_module, and Application::bload_module functions, refer to
their AIX man pages, or their entries in the IBM Parallel Environment for AIX: DPCL
Class Reference.

Step 5: Create probe expression to reference or call the probe module
function

To execute a probe module function as a probe, your analysis tool code must
create a probe expression that calls or references the probe module function.

� If it is going to execute the probe module function as a point probe or a
one-shot probe, the analysis tool uses the ProbeExp::call function to create a
probe expression representing a function call. See “Creating a probe
expression to represent a call to a probe module function” on page 132 for
more information.

� If it is going to execute the probe module function as a phase probe, the
analysis tool uses the ProbeModule::get_reference function to create a probe
expression that represents a reference to the function. See “Executing phase
probes” on page 153 for more information.

 Chapter 8. Creating probes 139

For additional information on the ProbeExp::call and ProbeModule::get_reference
functions, refer to their AIX man pages, or their entries in the IBM Parallel
Environment for AIX: DPCL Class Reference.

Step 6: Create data callback function to respond to messages from the
probe

As described in “Step 1: Create probe module function” on page 137, a probe
module function can send data back to the analysis tool by calling the DPCL
system-defined function Ais_send. If your probe module function does call the
Ais_send function, then the analysis tool code must contain a data callback function
that will handle the data that the Ais_send function will send. See Chapter 10,
“Creating data callback routines” on page 167 for more information on how to do
this.

Example: Creating and calling a probe module function
The following example code:

� encapsulates a general-purpose pass counter into the function count in the file
count.c,.

� compiles count.c into a probe module count (using the count.exp and
count.imp files to export and import functions as needed,

� creates a ProbeModule object to represent the probe module count, and loads
the module into process P,

� gets a reference to, and creates a probe expression to call, the count function,
and

� handles data sent by the Ais_send function using a data callback routine. If
your probe module uses the Ais_send function to send data back to the
analysis tool, then the analysis tool code must contain a data callback routine.
Refer to Chapter 10, “Creating data callback routines” on page 167 for more
information on data callback routines.

count.c

#include <dpclExt.h>
count(void 0msg_handle)

{
static int pcount = 8;

 char msg[188];

 pcount++;

if ((pcount % 18) == 8)
 {

sprintf(msg, "I have been called %d times\n", pcount);
Ais_send(msg_handle, (void 0) msg, 1 + strlen(msg));

 }
}

count.exp

0 Any line started with a '0' is a comment
0 We have a single function to export
count

count.imp

140 IBM PE for AIX V3R1.0: DPCL Programming Guide

#! .
Ais_send

compilation command:

cc -o count count.c -bE:count.exp -bI:count.imp -bnoentry -I/usr/lpp/ppe.dpcl/include

analysis tool code:

#include <dpcl.h>
void count_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);

main(int argc, char 0argv[]) {

 Process P("phantom.pok.ibm.com", 12345);

 Ais_initialize();

 ProbeModule my_probe_mod("count");

AisStatus sts = P.bconnect();

sts = P.bload_module(&my_probe_mod);

// look for a specific function object in the probe module
 ProbeExp count_fun;

const int bufSize = 128;
char bufname[bufSize]; // buffer for module_name(..)

for (int i=8; i < my_probe_mod.get_count(); i++)
 {

char 0funct_name = my_probe_mod.get_name(i, bufname, bufSize);

// is this function count ??
if (strcmp(funct_name, "count") == 8)

 {
count_fun = my_probe_mod.get_reference(i);
break; // yes.

 }
 }

 ProbeExp args[1];
args[8] = Ais_msg_handle;
ProbeExp count_call = count_fun.call(1, args);

// now search the source obj tree for a particular function
SourceObj my_program = P.get_program_object();

// Look for the correct Module
 SourceObj my_module;

char bufmname[bufSize]; // buffer for module_name(..)

for (i=8; i < my_program.child_count(); i++)
 {

my_module = my_program.child(i);

char 0mod_name = my_module.module_name(bufmname,bufSize);

if (strcmp(mod_name, "stencil.f") == 8)
 {

// expand the module
sts = my_module.bexpand(P);

 break;
 }
 }

 InstPoint one_point;
 ProbeHandle phandle;
 char buffname[bufSize];
 GCBFuncType cbarr[1];
 GCBTagType tagarr[1];

 Chapter 8. Creating probes 141

cbarr[8] = count_cb;
tagarr[8] = 8;

for (i=8; i < my_module.inclusive_point_count(); i++)
 {

one_point = my_module.inclusive_point(i);

if ((one_point.get_type() == IPT_function_call) &&
(one_point.get_location() == IPL_before))

 {
char 0funct_name = one_point.get_demangled_name(buffname, bufSize);

if (strcmp(funct_name, "compute_stencil") == 8)
 {

// Install the trace probe at the function call site
 sts = P.binstall_probe(1, &count_call, &one_point,

 cbarr, tagarr, &phandle);

//activate the probe
sts = P.bactivate_probe(1, &phandle);

 }
 }
 }

 Ais_main_loop();
}

// collect data from the callback
void count_cb(GCBSysType sys, GCBTagType tag, GCBTagType obj, GCBMsgType msg)
{

// the message being send is a string

char 0 count_message = (char 0) msg;

 printf("%s\n", count_message);

}

142 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 9. Executing probes in target application processes

Chapter 8, “Creating probes” on page 115 describes how to define a probe that
can execute as part of a target application process. The manor in which the probe
is installed and executed within one or more target application processes
distinguishes the probe as a particular probe type — either a point probe, a phase
probe, or a one-shot probe.

� point probes are installed at particular locations in the target application code,
and, when in an activated state, are triggered whenever execution reaches that
location in the code. See “Installing and activating point probes” for instructions
on executing probes of this type. For an overview of point probes, see “What is
a point probe?” on page 17.

� Phase probes are triggered by expiration of a timer and are executed
regardless of what code the target application is executing. See “Executing
phase probes” on page 153 for instructions on executing probes of this type.
For an overview of phase probes, see “What is a phase probe?” on page 19.

� One-shot probes are executed immediately and regardless of what code the
target application is executing. See “Executing one-shot probes” on page 163
for instructions on executing probes of this type. For an overview of one-shot
probes, see “What is a one-shot probe?” on page 20.

Installing and activating point probes
Point probes are probes installed at particular locations in the target application
code that, when in an activated state, are triggered whenever execution reaches
that location in the code. To install and activate a point probe in one or more target
application processes, the analysis tool must:

1. Define the probe as described in Chapter 8, “Creating probes” on page 115.

2. Navigate the application source structure (represented by SourceObj objects) to
identify the instrumentation point (InstPoint object) where the probe will be
installed.

3. Install the probe at the instrumentation point within one or more target
application processes.

4. Activate the probe so that it will execute as part of the target application
process whenever execution reaches its installed location in the target
application code.

The following steps describe these tasks in greater detail. For sample code, see
“Example: Installing and activating a point probe” on page 151.

Step 1: Create point probe
A probe is a probe expression that may optionally call functions. The first step in
installing and activating a point probe is to build the actual probe expression that
will serve as the point probe. See Chapter 8, “Creating probes” on page 115 for
detailed instructions on how to do this.

 Copyright IBM Corp. 2000 143

Step 2: Navigate application source structure to get instrumentation
point

Instrumentation points (InstPoint objects) are locations within a target application
process where an analysis tool can install point probes. Before the analysis tool
can install a point probe in a target application process, it must get a reference to
the InstPoint object where it wishes to place the probe. To get such a reference,
the analysis tool must navigate the target application's source structure by means
of source objects (SourceObj objects). Each SourceObj object represents part of the
source code structure associated with the target application process, and a group
of such objects provide the hierarchical representation of the source code structure
which the analysis tool can navigate. For an overview of instrumentation points, see
“What are instrumentation points?” on page 18. For an overview of source objects,
see “What are source objects?” on page 17.

To navigate an application's source structure to get an instrumentation point, the
analysis tool must:

1. Get a reference to a target application process (Process object) associated with
the source code structure to navigate. If the analysis tool is instrumenting a
serial application, then this is simply the Process object that represents the
target application. If the analysis tool is instrumenting a parallel application,
however, this would be just one of the Process class objects managed by the
Application class object. Note that while this initial source code navigation
must be performed using a single Process object, the analysis tool can later
use member functions of the Application class to install, activate, and remove
the point probe in all processes managed by the application (assuming these
are like processes compiled from the same source as in an SPMD application).

2. Get a reference to the top-level source object (called the "program object") for
the process. The analysis tool does this by calling the
Process::get_program_object function.

3. Navigate one level down into the source hierarchy to get a reference to the
source object representing the module where the analysis tool will install the
point probe.

4. Expand the target module source object so the analysis tool can navigate
further down into its source hierarchy.

5. Navigate one level further down into its source hierarchy to get a reference to
the source object that represents the function where the analysis tool will install
the point probe.

6. Navigate one level further down into the source hierarchy to get a reference to
the instrumentation point where the analysis tool will install the point probe.

Step 2a: Get target process object
If the analysis tool is instrumenting a serial application, it doesn't need to perform
this step, and you can skip ahead to “Step 2b: Get program object” on page 145. If
the analysis tool is instrumenting a parallel application, however, it must first get a
reference to a single process (Process object) that is managed by the Application
class object. This is because a source hierarchy is associated with a particular
process only. If multiple processes in the parallel application were compiled from
the same source code (such as a SPMD program), the analysis tool can later use
member functions of the Application class to install, activate, and remove the point
probe for all the Process objects managed by the Application. To navigate the

144 IBM PE for AIX V3R1.0: DPCL Programming Guide

source hierarchy, however, the analysis tool must identify a single representative
Process in the Application. To do this, the analysis tool uses the
Application::get_process function. The following line of code, for example, returns
the first Process object in the Application object app1.

Process p = app1.get_process(8);

For more information on the Application::get_process function, refer to its AIX
man page, or its entry in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Step 2b: Get program object
To navigate the source code structure associated with a particular process, the
analysis tool first needs to get a reference to the source object (SourceObj object)
that represents the top of the process source hierarchy. This top level SourceObj
object is called the "program object" and is returned by the
Process::get_program_object function. The following line of code stores the
program object in a new SourceObj object named myprog.

SourceObj myprog = P.get_program_object();

For more information on the Application::get_program_object function, refer to its
AIX man page, or its entry in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Step 2c: Identify target module where point probe will be
installed
Once the analysis tool has a reference to the program object, it needs to navigate
one level down into the source hierarchy to get a reference to the SourceObj object
that represents the module where the analysis tool will install the point probe. To do
this, the analysis tool can use the SourceObj::child_count, SourceObj::child, and
SourceObj::module_name functions

The SourceObj::child_count function returns the number of child SourceObj objects
associated with the SourceObj object; in the case of a program object, these child
SourceObj objects represent the program modules. The SourceObj::child function
returns a specific child SourceObj. Once it has a reference to the module level
SourceObj object, the analysis tool can use the SourceObj::module_name function to
identify the name of the module.

This code example uses the SourceObj::child_count function to initialize a for
loop, and then, within the for loop, uses the SourceObj::child and
SourceObj::module_name functions to identify the target module. This sample code
assumes a specialized analysis tool designed for a particular program, and so the
name of the target module is already known. For a general-purpose analysis tool,
where the target application is not known at design time, these same functions
could be used, for example, to populate a scrolled list to show the module names.
Here's the specialized analysis tool example that identifies hello.c as the target
module.

for (int c = 8; c < myprog.child_count(); c++)
{

mymod = myprog.child(c);

if (strcmp(mymod.module_name(bufmname, bufSize), "hello.c") ==8)
 {

// CODE HERE

 Chapter 9. Executing probes in target application processes 145

 }
}

For more information on the SourceObj::child_count, SourceObj::child, and
SourceObj::module_name functions, refer to their AIX man pages, or their entries in
the IBM Parallel Environment for AIX: DPCL Class Reference.

Step 2d: Expand target module
Once the analysis tool identifies the target module source object, it must expand it
in order to navigate further down into the source hierarchy. To do this, the analysis
tool can use either the blocking function SourceObj::bexpand, or the asynchronous
function SourceObj::expand.

Table 45. Expanding a module-level source object

To use: For example:

The blocking function
SourceObj::bexpand

for (int c = 8; c < myprog.child_count(); c++)
{

mymod = myprog.child(c);

if (strcmp(mymod.module_name(bufmname, bufSize), "hello.c") ==8)
 {

printf ("found module hello.c. expanding....\n");

sts = mymod.bexpand(P);

printf ("expand status module # %d = %d\n", c, (int)sts);
if ((int)sts != 8) printf("%s\n", sts.status_name());

 break;
 }
}

The asynchronous function
SourceObj::expand

void expand_cb(GCBSysType sys, GCBTagType tag, GCBTagType obj,
 GCBMsgType msg);

// ...

for (c = 8; c < myprog.child_count(); c++)
{

mymod = myprog.child(c);
name = mymod.module_name(buffer, bufsize);
if (strcmp(name, "integral_c.c") == 8)

 {
// found the target module, expand it

async_done = 8;
sts = mymod.expand(P, (GCBFuncType)expand_cb, (GCBTagType)2);
printf("expand is submitted, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

 break;
 }
}

// ...

void
expand_cb(GCBSysType sys, GCBTagType tag, GCBTagType obj, GCBMsgType msg)
{

AisStatus 0sts = (AisStatus 0)msg;

printf("expand is completed, status = %d\n", (int)0sts);
async_done = 1;

 Ais_end_main_loop();
}

146 IBM PE for AIX V3R1.0: DPCL Programming Guide

For more information on the SourceObj::bexpand and SourceObj::expand functions,
refer to their AIX man pages, or their entries in the IBM Parallel Environment for
AIX: DPCL Class Reference

Step 2e: Identify target function
Once the analysis tool has expanded the target module, it can navigate one more
level down into the source hierarchy to get a reference to the SourceObj that
represents the function where the analysis tool will install the point probe. Once
again, the analysis tool can navigate down into the hierarchy using the
SourceObj::child_count and SourceObj::child functions. The
SourceObj::child_count function returns the number of child SourceObj objects
associated with the SourceObj object; in the case of a module source object, these
child SourceObj objects represent the module's functions. The SourceObj::child
function returns a specific child SourceObj object. Once it has a reference to the
function level SourceObj object, the analysis tool can use the
SourceObj::get_demangled_name function (to identify the demangled name of the
function) or the SourceObj::get_mangled_name function (to identify the mangled
name of the function).

This code example uses the SourceObj::child_count function to initialize a for
loop, and then, within the loop, uses SourceObj::child and
SourceObj::get_demangled_name functions to identify the target function. This
sample code assumes a specialized analysis tool designed for a particular program,
and so the name of the target function is already known. For a general purpose
analysis tool, where the target application is not known at design time, these same
functions could be used, for example, to populate a scrolled list to show the
function names. Here's the specialized example that identifies the module hello as
the target function.

SourceObj myfun;

char bufdname[bufSize]; // buffer for get_demangled_name(..)

printf("function count = %d\n", mymod.child_count());

for (c = 8; c < mymod.child_count(); c++)
{

myfun = mymod.child(c);

char 0name = myfun.get_demangled_name(bufdname, bufSize);

if (strcmp(name, "hello") ==8)
 {

printf("function hello found.\n");
 break;
 }
}

For more information on the SourceObj::child_count, SourceObj::child,
SourceObj::get_demangled_name, and SourceObj::get_mangled_name functions,
refer to their AIX man pages or their entries in the IBM Parallel Environment for
AIX: DPCL Class Reference.

 Chapter 9. Executing probes in target application processes 147

Step 2f: Get reference to instrumentation point within target
application
Once the analysis tool identifies the target function source object, it can identify the
actual instrumentation point (InstPoint object) where it will install the point probe.
To do this, the analysis tool can use the SourceObj::exclusive_point_count,
SourceObj::exclusive_point, and InstPoint::get_type functions. The
SourceObj::exclusive_point_count function returns the number of instrumentation
points in the function, and the SourceObj::exclusive_point function returns a
specific InstPoint object. The InstPoint::get_type function enables the analysis
tool to determine whether the instrumentation point represents a function entry,
function exit, or function call site.

This code example uses the SourceObj::exclusive_point_count function to
initialize a for loop, and then, within the for loop, uses the
SourceObj::exclusive_point and InstPoint::get_type functions to identify the
function entry site.

InstPoint mypoint;

printf("point count = %d\n", myfun.exclusive_point_count());

for (c = 8; c < myfun.exclusive_point_count(); c++)
{

mypoint = myfun.exclusive_point(c);

if (mypoint.get_type() == IPT_function_entry)
 {

printf("function entry point found.\n");
 break;
 }
}

For more information on the SourceObj::exclusive_point_count,
SourceObj::exclusive_point, and InstPoint::get_type functions, refer to their AIX
man pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Step 3: Install probe at instrumentation point
Once the analysis tool has defined its probes (as described in Chapter 8, “Creating
probes” on page 115) and identified an instrumentation point (as described in “Step
2: Navigate application source structure to get instrumentation point” on page 144),
it can install the probe at the instrumentation point. To do this on a single process
basis, the analysis tool can use the asynchronous function
Process::install_probe or its blocking equivalent Process::binstall_probe. To do
this on an application-wide basis, the analysis tool can use the functions
Application::install_probe or Application::binstall_probe. Note that all of
these functions accept an array of probes. This means that the analysis tool can
install multiple point probes using a single call.

148 IBM PE for AIX V3R1.0: DPCL Programming Guide

Table 46. Installing a point probe in one or more target application processes

To install a
probe:

In a single process (Process object) In multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
install_probe

void install_probe_cb(GCBSysType sys,
GCBTagType tag, GCBTagType obj,

 GCBMsgType msg);

// ...

// install the probe in function entry point
points[8] = mypoint;
cbs[8] = data_cb;
tags[8] = (GCBTagType)1;
async_done = 8;
sts = P.install_probe(1, &fullexp, points,
 cbs, tags,
 (GCBFuncType)install_probe_cb,
 (GCBTagType)3, phds);
printf("install_probe is submitted, \
status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// ...

void
install_probe_cb(GCBSysType sys,

GCBTagType tag, GCBTagType obj,
 GCBMsgType msg)
{

Process 0p = (Process 0)obj;
AisStatus 0sts = (AisStatus 0)msg;

printf("task %d install_probe is \
completed, status = %d\n", p->get_task(),
 (int)0sts);

async_done = 1;
 Ais_end_main_loop();
}

void install_probe_cb(GCBSysType sys,
GCBTagType tag, GCBTagType obj,

 GCBMsgType msg);

// ...

// install the probe in function entry point
points[8] = mypoint;
cbs[8] = data_cb;
tags[8] = (GCBTagType)1;
async_done = 8;
sts = A.install_probe(1, &fullexp, points,

cbs, tags, (GCBFuncType)install_probe_cb,
 (GCBTagType)3, phds);
printf("install_probe is submitted, \
status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// ...

void
install_probe_cb(GCBSysType sys, GCBTagType tag,

GCBTagType obj, GCBMsgType msg)
{

static int count = 8;
Process 0p = (Process 0)obj;
AisStatus 0sts = (AisStatus 0)msg;

printf("task %d install_probe is \
completed, status = %d\n", p->get_task(),
 (int)0sts);
 count++;

if (count >= num_procs)
 {

async_done = 1;
 Ais_end_main_loop();
 }
}

Using the
blocking
function
binstall_probe

// install the probe in function entry point
points[8] = mypoint;
cbs[8] = data_cb;
tags[8] = (GCBTagType)1;
sts = P.binstall_probe(1, &fullexp, points, cbs,
 tags, phds);
printf("install_probe is done, status = %d\n",
 (int)sts);
if (sts.status() != ASC_success) exit(1);

// install the probe in function entry point
points[8] = mypoint;
cbs[8] = data_cb;
tags[8] = (GCBTagType)1;
sts = A.binstall_probe(1, &fullexp, points, cbs,
 tags, phds);
printf("install_probe is done, status = %d\n",
 (int)sts);
if (sts.status() != ASC_success) exit(1);

For more information on the Process::install_probe, Process::binstall_probe,
Application::install_probe, or Application::binstall_probe, refer to their AIX
man pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference

Step 4: Activate probe
Once you have installed a point probe in one or more target application processes,
you must activate it so that it will execute as part of the target application process
whenever execution reaches its installed location in the target application code. To
do this on a single process basis, the analysis tool can use the asynchronous
function Process::activate_probe or its blocking equivalent
Process::bactivate_probe. To do this on an application-wide basis (for all Process
objects managed by an Application object), the analysis tool can use the function

 Chapter 9. Executing probes in target application processes 149

Application::activate_probe or Application::bactivate_probe. Note that all of
these functions accept an array of probe handles. This means that the analysis tool
can activate more than one point probe using a single call.

Table 47. Activating a point probe in one or more target application processes

To activate a
probe:

In a single process (Process object) In multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
activate_probe

void activate_probe_cb(GCBSysType sys,
GCBTagType tag, GCBTagType obj,

 GCBMsgType msg);

// ...

// activate the probe
async_done = 8;
sts = P.activate_probe(1, phds,
 (GCBFuncType)activate_probe_cb,
 (GCBTagType)4);
printf("activate_probe is submitted, \
status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// ...

void
activate_probe_cb(GCBSysType sys,

GCBTagType tag, GCBTagType obj,
 GCBMsgType msg)
{

Process 0p = (Process 0)obj;
AisStatus 0sts = (AisStatus 0)msg;

async_done = 1;
printf("task %d activate_probe is \

completed, status = %d\n", p->get_task(),
 (int)0sts);
 Ais_end_main_loop();
}

void activate_probe_cb(GCBSysType sys,
GCBTagType tag, GCBTagType obj,

 GCBMsgType msg);

// ...

// activate the probe
async_done = 8;
sts = A.activate_probe(1, phds,
 (GCBFuncType)activate_probe_cb,
 (GCBTagType)4);
printf("activate_probe is submitted, \
status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// ...

void
activate_probe_cb(GCBSysType sys,

GCBTagType tag, GCBTagType obj,
 GCBMsgType msg)
{

static int count = 8;
Process 0p = (Process 0)obj;
AisStatus 0sts = (AisStatus 0)msg;

printf("task %d activate_probe is \
completed, status = %d\n", p->get_task(),
 (int)0sts);
 count++;

if (count >= num_procs)
 {

async_done = 1;
 Ais_end_main_loop();
 }
}

Using the
blocking
function
bactivate_probe

// activate the probe
sts = P.bactivate_probe(1, phds);
printf("activate_probe is done, \
status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);
// enter main loop
Ais_main_loop();
printf("----- The End -----\n");

// activate the probe
sts = A.bactivate_probe(1, phds);
printf("activate_probe is done, \
status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);
// enter main loop
Ais_main_loop();
printf("----- The End -----\n");

For more information on the Process::activate_probe, Process::bactivate_probe,
Application::activate_probe, or Application::bactivate_probe functions, refer to
their AIX man pages or their entries in the IBM Parallel Environment for AIX: DPCL
Class Reference.

150 IBM PE for AIX V3R1.0: DPCL Programming Guide

Example: Installing and activating a point probe
The following example code:

1. navigates the source structure of a parallel application to identify an
instrumentation point.

2. installs a point probe at the instrumentation point.

3. activates the point probe.

#include <dpcl.h>
void data_cb (GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);

// %%

main(int argc, char 0argv[])
{

PoeAppl A; // A represents a POE application

 Ais_initialize();

AisStatus sts = A.binit_procs(argv[1], atoi(argv[2]));
printf ("read config status = %d\n", (int)sts);

sts = A.bconnect();

printf ("connect status = %d\n", (int)sts);

Process P = A.get_process(8);

SourceObj myprog = P.get_program_object();

 SourceObj mymod;

const int bufSize = 128;
char bufmname[bufSize]; // buffer for module_name(..)

for (int c = 8; c < myprog.child_count(); c++)
 {

mymod = myprog.child(c);

char 0 modname = mymod.module_name(bufmname,bufSize);

if (strcmp(modname, "chaotic.f") ==8)
 {

printf("Module chaotic.f found... expanding\n");

sts = mymod.bexpand(P);

printf ("expand status = %d\n", (int)sts);

 break;
 }
 }

 SourceObj myfun;

char bufdname[bufSize]; // buffer for get_demangled_name(..)

for (c = 8; c < mymod.child_count(); c++)
 {

myfun = mymod.child(c);

char 0 funname = myfun.get_demangled_name(bufdname,bufSize);

if (strcmp(funname, "exchange") ==8)
 {

printf("function exchange found... \n");

 break;

 Chapter 9. Executing probes in target application processes 151

 }
 }

 InstPoint mypoint;

for (c = 8; c < myfun.exclusive_point_count(); c++)
 {

mypoint = myfun.exclusive_point(c);

if (mypoint.get_type() == IPT_function_entry)
 {

printf("Found function entry point\n");

 break;
 }
 }

// malloc pcount;

int val = 8;
ProbeExp pcount = A.balloc_mem(int32_type(), &val, sts);

printf ("malloc pcount status = %d\n", (int)sts);

ProbeExp addexp = pcount.assign(pcount + ProbeExp(1));

 // Create the expression parameters
 ProbeExp parms[3];

parms[8] = Ais_msg_handle;
parms[1] = pcount.address();
parms[2] = ProbeExp (4);

ProbeExp sendexp = Ais_send.call(3,parms);

ProbeExp fullexp = addexp.sequence(sendexp);

 ProbeHandle myph;
GCBFuncType cbs[] = {data_cb};

 GCBTagType tags[] = {(GCBTagType)8};

sts = A.binstall_probe(1, &fullexp, &mypoint,
 cbs, tags,
 &myph);

printf ("install status = %d\n",(int)sts);

sts = A.bactivate_probe(1, &myph);

printf ("activate status = %d\n", (int)sts);

 Ais_main_loop();
}

// %%

void
data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

Process 0p = (Process 0)obj;
int 0i = (int 0)msg;

printf("Task %d sent the count %d\n", p->get_task(),0i);

// terminate the program after 18 messages are received

if (0i == 18) {
 Ais_end_main_loop();
 }
}

152 IBM PE for AIX V3R1.0: DPCL Programming Guide

// %%

Executing phase probes
Phase probes are probes that are executed periodically upon execution of a timer,
regardless of what part of the target application's code is executing. The interval at
which the probes are executed is measured in CPU time (as opposed to wall-clock
time), and is called the phase period. The control mechanism for invoking phase
probes at these set CPU-time intervals is called a "phase". Represented by
instances of the Phase class, phases enable your analysis tool code to specify the
particular phase probe(s) to be invoked and the interval at which their execution is
triggered. Note that the DPCL system uses a SIGPROF signal to activate a phase;
target applications that themselves use the SIGPROF signal cannot be
instrumented with phases. For more information on phase probes and phases, refer
to “What is a phase probe?” on page 19.

To add a phase to one or more target application processes in order to have it call
its associated phase probes (probe module functions) at set CPU-time intervals, the
analysis tool:

1. Creates one or more probe modules containing the function(s) to be triggered
by the phase. A phase can, each time its interval expires, call up to three probe
module functions — a phase begin function, a phase data function, and a
phase end function. In addition to these probes module functions that are
executed each time the phase is activated, the analysis tool can also create:

� an initialization function to be executed only when the phase is first added
to a target application process.

� Up to three phase exit functions (the phase exit begin function, the phase
exit data function, and the phase exit end function) to be executed when
the phase is removed from the target application process. Upon phase
removal, the phase exit begin function will execute, followed by the phase
exit data function (which will execute once for each datum associated with
the phase), followed by the phase exit end function.

2. If using a data function, allocates and associates data with the phase's data
function. Each time the phase is triggered, the data function executes once per
datum that the analysis tool has previously allocated and associated with the
phase.

3. For each of the phase probes (probe module functions) to be used by the
phase, creates a probe expression that represents a reference to the desired
function. This not only includes the phase begin function, phase data function,
and phase end function, but also any initialization function or phase exit
functions.

4. Creates a Phase class object that defines the phase probe(s) (probe module
function(s)) to be executed by the phase, and the interval between successive
invocations of the phase.

5. Calls a function to add the phase to one or more target application processes.
If you want an initialization function to be executed when the phase is first
added to the target application process, you supply the function that adds the
phase with a probe expression that represents a reference to the initialization
function.

 Chapter 9. Executing probes in target application processes 153

6. Calls a function that specifies up to three exit functions (begin, data, and end)
to be executed when the phase is removed from the target application process.
You supply this function with probe expressions representing the desired phase
exit functions.

7. If desired, modifies the phase period (the CPU-time interval at which the
installed phase is activated to execute its probes).

Step 1: Create probe module(s)
The first step in creating a phase structure to execute phase probes is to create
one or more probe modules that contain the functions to be triggered by the phase.
A phase can, each time its interval expires, call up to three probe module functions
— a begin function, a data function, and an end function. While the phase must, in
order to be useful, call at least one of these functions, any one of them is optional.
At the very least, an analysis tool will usually supply a data function.

Once the phase is activated, it will call the phase probe module functions that have
been associated with it. The first phase probe it calls is the one identifying the
begin function (provided one has been specified). Typically, the begin function will
perform any setup tasks that may be required. When the begin function completes,
the phase calls the phase probe that identifies the data function (provided one has
been specified). The data function executes once per datum that the analysis tool
will have previously allocated and associated with this phase. When the data
function finishes executing for the last datum, the phase calls the phase probe that
identifies the end function (provided one has been specified). Typically, the end
function performs any clean up chores that may be required.

In addition to these probes module functions that are executed each time the phase
is activated, the analysis tool can also create:

� an initialization function to be executed only when the phase is first added to a
target application process.

� Up to three phase exit functions (the phase exit begin function, the phase exit
data function, and the phase exit end function) to be executed when the phase
is removed from the target application process. These functions will be
executed when:

– the analysis tool explicitly sends a request to have the phase removed
(using the Process::remove_phase, Process::bremove_phase,
Application::remove_phase, or Application::bremove_phase function).

– the analysis tool disconnects from the target application process (using the
Process::disconnect, Process::bdisconnect, Application::disconnect, or
Application::bdisconnect function) without first explicitly requesting to
have the phase removed.

– The target application process finishes executing while the indicated phase
is still active.

When the phase exit functions are triggered, the first phase probe it calls is the
one identifying the phase exit begin function (provided one has been specified).
Like the phase begin function, the phase exit begin function will perform any
setup tasks that may be required for the data and end functions to follow.
When the phase exit begin function completes, the DPCL system executes the
phase probe that identifies the phase exit data function (provided one has been
specified). The phase exit data function, like the phase data function, executes

154 IBM PE for AIX V3R1.0: DPCL Programming Guide

once per datum that the analysis tool will have previously allocated and
associated with this phase. When the phase exit data function finishes
executing for the last datum, the DPCL system calls the phase probe that
identifies the phase exit end function (provided one has been specified).
Typically, the end function performs any final clean up chores that may be
required. Like the phase functions, however, any of these phase exit functions
is optional.

The following example code shows a probe module that defines the phase begin
function, the phase data function, and the phase end function. It also defines an
initialization function to be executed when the phase is first added to a target
application process. In order to execute this module's functions in one or more
target application process, the module will need to be compiled and then loaded
into the target application process. For more information on how to do this, refer to
“Creating and calling probe module functions” on page 136.

#include <stdio.h>
#include <sys/time.h>
#include <sys/param.h>
#include <dpclExt.h>

static int visit = 8;
static char msg[MAXPATHLEN];
static char msg_loc[MAXPATHLEN];
static char msg_time[MAXPATHLEN];
static int msg_size;

void
init_func(void 0handle)
{

sprintf(msg, "init_func() started\n");
msg_size = strlen(msg) + 1;

 Ais_send(handle,msg,msg_size) ;
}

void
begin_func(void 0handle)
{
 int rc;

sprintf(msg, "begin_func() invoked");
msg_size = strlen(msg) + 1;

if ((rc = Ais_send(handle, msg, msg_size)) != 8) {
printf("begin_func(): ERROR, Ais_send()=%d\n", rc);

 }

 printf("begin_func() called\n");
}

void
data_func(void 0handle, void 0_data)
{
 int rc;

int 0data = (int 0)_data;

0data = 0data + 1;

sprintf(msg, "data_func(): data = %d", 0data);
msg_size = strlen(msg) + 1;

if ((rc = Ais_send(handle, msg, msg_size)) != 8) {
printf("data_func(): ERROR, Ais_send()=%d\n", rc);

 }

 Chapter 9. Executing probes in target application processes 155

 printf("data_func() called\n");
}

void
end_func(void 0handle)
{
 int rc;

sprintf(msg, "end_func() invoked\n");
msg_size = strlen(msg) + 1;

if ((rc = Ais_send(handle, msg, msg_size)) != 8) {
printf("end_func(): ERROR, Ais_send()=%d\n", rc);

 }

 printf("end_func() called\n");
}

Step 2: Create probe expression(s) to reference the probe module
function(s)

When creating an instance of the Phase class (as described next in “Step 3: Create
phase” on page 157), the analysis tool must, for each phase probe (module
function) that the Phase will trigger, create a probe expression that represents a
reference to the function. In order to have loaded the probe module into the target
application process(es), the analysis tool will have already created a ProbeModule
class object to represent the probe module. (For more information, see “Creating
and calling probe module functions” on page 136.) To create a probe expression
that represents a reference to one of the probe module's functions, the analysis tool
can call the Probe_Module::get_reference function. The analysis tool code
provides this function with the index of the function within the probe module. To
determine the number of functions in the module, the analysis tool can call the
ProbeModule::get_count function. To determine the name of a particular function,
the analysis tool can call the ProbeModule::get_name function.

This following code example uses the ProbeModule::get_count,
ProbeModule::get_name, and ProbeModule::get_reference functions to create
probe expressions that represent references to all the probe module functions
shown in the example code in “Step 1: Create probe module(s)” on page 154. The
phase begin function (begin_func), the phase data function (data_func) and the
phase end function (end_func) will all be used when instantiating the Phase class in
the next step. The initialization function (init_func) is the one to be executed only
when the phase is first added to a target application process; the probe expression
that represents a reference to this function will be used as a function parameter to
the Process::add_phase, Process::badd_phase, Application::add_phase, or
Application::badd_phase. These functions are described in “Step 4: Add phase to
the target application process(es)” on page 157.

// look for functions in the loaded module
// that are to be used in phase

for (int j = 8; j < load_mod.get_count(); j++) {
 if (strcmp("init_func",

load_mod.get_name(j, buffer, sizeof(buffer))) == 8)
 {

init_func = load_mod.get_reference(j);
 }

else if (strcmp("begin_func",
load_mod.get_name(j, buffer, sizeof(buffer))) == 8)

 {
begin_func = load_mod.get_reference(j);

 }
else if (strcmp("data_func",

load_mod.get_name(j, buffer, sizeof(buffer))) == 8)

156 IBM PE for AIX V3R1.0: DPCL Programming Guide

 {
data_func = load_mod.get_reference(j);

 }
else if (strcmp("end_func",

load_mod.get_name(j, buffer, sizeof(buffer))) == 8)
 {

end_func = load_mod.get_reference(j);
 }
 }

For more information on the ProbeModule::get_count, ProbeModule::get_name, and
ProbeModule::get_reference functions, refer to their AIX man pages or their entries
in the IBM Parallel Environment for AIX: DPCL Class Reference.

Step 3: Create phase
A phase structure (Phase class object) defines the phase probe(s) (probe module
function(s)) to be executed and the interval between successive invocations of
these probes. The Phase class is defined in the header file Phase.h. This following
example code creates a phase object that specifies the phase should be activated
every second of CPU time to execute the phase begin function (begin_func), the
phase data function (data_func) and the phase end function (end_func).

// create a phase with one second period
float period = 1.8;
myphase = Phase(period,

begin_func, (GCBFuncType)data_cb, (GCBTagType)1,
data_func, (GCBFuncType)data_cb, (GCBTagType)2,
end_func, (GCBFuncType)data_cb, (GCBTagType)3);

Although the phase period (the CPU-time interval at which the phase is activated to
execute its probes) is initially set when the analysis tool defines the phase, note
that the analysis tool can later lengthen or shorted this interval as desired. Refer to
“Step 7: Modify phase period” on page 159 for more information.

For more information on the Phase class and its constructors, refer to the IBM
Parallel Environment for AIX: DPCL Class Reference.

Step 4: Add phase to the target application process(es)
Once the analysis tool has created the Phase object (as described in “Step 3:
Create phase”), it can add it to one or more target application processes. To add a
phase on a single process basis, the analysis tool can use the asynchronous
function Process::add_phase or its blocking equivalent Process::badd_phase. To
add a phase on an application-wide basis (for all Process class objects managed by
an Application object), the analysis tool can use the functions
Application::add_phase or Application::badd_phase. Optional parameters of
these four functions enable you to specify an initialization function to be executed
when the phase is added to a target application process, as well as a data callback
routine and callback tag for handling message data generated by the initialization
function. The following code example uses the Process::badd_phase function to
add the phase we created in “Step 3: Create phase” to a single target application
process. The initialization function shown in the probe module in “Step 1: Create
probe module(s)” on page 154 will execute when the Phase is added to the
process. The probe expression init_func represents a reference to the probe
module function; we created this probe expression in “Step 5: Create probe
expression(s) to allocate and associate data with the phase” on page 158.

 Chapter 9. Executing probes in target application processes 157

// add the phase to application
sts = P.badd_phase(myphase,

init_func, (GCBFuncType)data_cb, (GCBTagType)4);
if (sts.status()==ASC_success){

printf("badd_phase() was successful\n");
} else {

printf("badd_phase() FAILED.. %s\n",sts.status_name());
 exit(8);
}

For more information on the Process::add_phase, Process::badd_phase,
Application::add_phase, or Application::badd_phase functions, refer to their AIX
man pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Step 5: Create probe expression(s) to allocate and associate data with
the phase

If using a phase data function, the analysis tool code will need to create a probe
expression to allocate and associate data with the phase. Each time the phase is
triggered, the data function executes once per datum that the analysis tool has
previously allocated and associated with the phase. Executing once per datum
enables the data function to perform the same actions on the different data. Each
datum, for example, could be a separate counter — each incremented by the same
data function. If the analysis tool does not associate any data with the phase, then
the data function will not execute.

“Creating probe expressions to represent persistent data” on page 120 describes
how you can use the Process::alloc_mem, Process::balloc_mem,
Application::alloc_mem, and Application::balloc_mem to allocated memory in
target application processes. What this earlier section did not state, however, is the
an optional parameter of these functions enables the analysis tool to associate the
data allocated in the process(es) with a particular phase. In this following example
of the Process::balloc_mem function, the probe expression phase_da is created to
represent a persistent integer variable with the initial value of 1000. This probe
expression also associates the allocated data with the Phase object myphase
created in “Step 3: Create phase” on page 157. Each time this phase is activated,
this data value will be passed to the phase data function data_func. Since there is
only this one datum associated with the phase, the phase data function will execute
only once each time the phase is activated.

// create variable to be used in the phase
int init_value = 1888;
ProbeExp phase_da = P.balloc_mem(int32_type(), (void 0)&init_value,
 myphase, sts);
if (sts.status()==ASC_success){

printf("balloc_mem() was successful\n");
} else {

printf("balloc_mem() FAILED.. %s\n",sts.status_name());
 exit(8);
}

For more information on the Process::alloc_mem, Process::balloc_mem,
Application::alloc_mem, and Application::balloc_mem functions, refer to their AIX
man pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference.

158 IBM PE for AIX V3R1.0: DPCL Programming Guide

Step 6: Specify phase exit functions
If the analysis tool code created one or more phase exit functions in “Step 1:
Create probe module(s)” on page 154, it needs to associate them with the Phase
on one or more target application processes. To do this, the analysis tool code calls
the Process::set_phase_exit, Process::bset_phase_exit,
Application::set_phase_exit, or Application::bset_phase_exit function. The
analysis tool code must supply these functions with probe expressions that
represent references to the actual probe module functions. The analysis tool code
must, therefore, have already created probe expressions for the exit functions as
described in “Step 5: Create probe expression(s) to allocate and associate data
with the phase” on page 158. The set_phase_exit and bset_phase_exit functions
also allow the analysis tool to specify a callback routine and callback tag for each
of the phase exit functions. The following code uses the Process::bset_phase_exit
function call to associate a phase exit begin function, a phase exit data function,
and a phase exit end function with the Phase object phase1 on one particular target
application process. The three phase exit functions are represented by the probe
expressions exit_begin_func, exit_data_func, and exit_end_func previously
created by calling the ProbeModule::get_reference. The procedure for creating a
probe expression using the ProbeModule::get_reference function is described in
“Step 5: Create probe expression(s) to allocate and associate data with the phase”
on page 158.

sts = P.bset_phase_exit(myphase,
exit_begin_func, (GCBFuncType)msg_cb, (GCBTagType)6,
exit_data_func, (GCBFuncType)msg_cb, (GCBTagType)7,
exit_end_func, (GCBFuncType)msg_cb, (GCBTagType)8);

For more information on the Process::set_phase_exit, Process::bset_phase_exit,
Application::set_phase_exit, or Application::bset_phase_exit functions, refer to
their AIX man pages or their entries in the IBM Parallel Environment for AIX: DPCL
Class Reference.

Step 7: Modify phase period
A phase period specifies the interval of CPU time at which a phase is activated.
When the phase is activated, it then executes its phase probes (phase begin,
phase data, and phase end functions). The analysis tool initially sets the phase
period when defining the Phase class object as described in “Step 3: Create phase”
on page 157. The analysis tool can also, once the Phase class object has been
added to one or more target application processes, modify the phase period so that
the phase is activated at longer or shorter intervals of CPU time. The analysis tool
can reset a phase period within a single target application process by calling the
Process::set_phase_period function or its blocking equivalent —
Process::bset_phase_period. The analysis tool can also reset a phase period on
an application-wide basis (for each Process object managed by an Application
object) by calling the Application::set_phase_period or
Application::bset_phase_period function.

One use of the Process::set_phase_period, Process::bset_phase_period,
Application::set_phase_period, and Application::bset_phase_period functions is
to control when a phase will first execute. For example, say you do not want a
phase to be activated until after the analysis tool has allocated and associated data
with the phase. Unfortunately, you have to add the phase to one or more processes
(as described in “Step 4: Add phase to the target application process(es)” on
page 157) before you can allocate data for it (as described in “Step 5: Create

 Chapter 9. Executing probes in target application processes 159

probe expression(s) to allocate and associate data with the phase” on page 158).
In the example code below, the analysis tool adds a phase whose phase period is
999.0 to a particular process. The long phase period effectively places the phase in
a suspended state while the analysis tool allocates and associates data with the
phase. Once the data allocation step is complete, the analysis tool calls the
Process::set_phase_period function to set the phase period to the intended
CPU-time interval of 0.1 seconds

// create a phase object with a large period
// to effectively suspend its execution

period = 999.8;
 try
 {

phase1 = Phase(period,
 begin_func, (GCBFuncType)msg_cb, (GCBTagType)1,

data_func, (GCBFuncType)msg_cb, (GCBTagType)2,
 end_func, (GCBFuncType)msg_cb, (GCBTagType)3);
 }

catch (AisStatus excp)
 {

printf("new Phase failed with sts=%s\n", excp.status_name());
 exit(1);
 }

// add the phase to target application
sts = P.badd_phase(phase1,

 init_func, (GCBFuncType)msg_cb, (GCBTagType)4);
printf("add_phase is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// set the phase's exit functions
sts = P.bset_phase_exit(phase1,

 exit_begin_func, (GCBFuncType)msg_cb, (GCBTagType)6,
 exit_data_func, (GCBFuncType)msg_cb, (GCBTagType)7,
 exit_end_func, (GCBFuncType)msg_cb, (GCBTagType)8);

printf("set_phase_exit is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// allocate data variables for the phase
value = 8;
pcount = P.balloc_mem(int32_type(), &value, phase1, sts);
printf("alloc_mem is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

value = 188;
pcount2 = P.balloc_mem(int32_type(), &value, phase1, sts);
printf("alloc_mem is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// set the phase to its true execution interval
// to resume its normal operation

period = 8.1;
sts = P.bset_phase_period(phase1, period);
printf("set_phase_period is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// query the phase's execution interval
interval = P.get_phase_period(phase1, sts);
printf("phase period = %f\n", interval);

In addition to being able to set a phase period, the analysis tool can also ascertain
the value of a phase period by calling the Process::get_phase_period function. For
more information on the Process::set_phase_period, Process::bset_phase_period,
Application::set_phase_period, Application::bset_phase_period, or
Process::get_phase_period functions, refer to their AIX man pages, or their entries
in the IBM Parallel Environment for AIX: DPCL Class Reference.

160 IBM PE for AIX V3R1.0: DPCL Programming Guide

Example: Executing phase probes
The following example code:

1. Loads a probe module into a target application process.

2. Creates probe expressions that reference functions in the probe module.

3. Creates a phase using the probe expressions that represent probe module
functions. The phase period is initially set to a high number (999.0) to
effectively suspend activation of the phase until data has been allocated for it.

4. Adds the phase to the target application process.

5. Allocates data variables for the phase.

6. Resets the phase period so that the phase is executed every 0.1 second of
CPU time.

#include <stdio.h>
#include <stdlib.h>

#include <dpcl.h>

void msg_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);

void
main(int argc, char 0argv[])
{
 Process P;
 AisStatus sts;
 int c;
 int value;
 ProbeExp pcount;
 ProbeExp pcount2;
 ProbeExp init_func;
 ProbeExp begin_func;
 ProbeExp data_func;
 ProbeExp end_func;
 ProbeExp exit_begin_func;
 ProbeExp exit_data_func;
 ProbeExp exit_end_func;
 ProbeModule load_1;
 float period;
 float interval;
 Phase phase1;

const int bufsize = 256;
 char buffer[bufsize];
 char 0name;

// initialize DPCL environment
 Ais_initialize();

// construct a valid Process object
P = Process(argv[1], atoi(argv[2]));

// connect to the target application
sts = P.bconnect();
printf("connect is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// load probe module
load_1 = ProbeModule("./load_1");
sts = P.bload_module(&load_1);
printf("load_module is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// look for all the phase related functions
for (c = 8;c < load_1.get_count(); c++)

 {
name = load_1.get_name(c, buffer, bufsize);
if (strcmp("init_func", name) == 8)

 {
init_func = load_1.get_reference(c);

 printf("found init_func\n");
 }

 Chapter 9. Executing probes in target application processes 161

else if (strcmp("begin_func", name) == 8)
 {

begin_func = load_1.get_reference(c);
 printf("found begin_func\n");
 }

else if (strcmp("data_func", name) == 8)
 {

data_func = load_1.get_reference(c);
 printf("found data_func\n");
 }

else if (strcmp("end_func", name) == 8)
 {

end_func = load_1.get_reference(c);
 printf("found end_func\n");
 }

else if (strcmp("exit_begin_func", name) == 8)
 {

exit_begin_func = load_1.get_reference(c);
 printf("found exit_begin_func\n");
 }

else if (strcmp("exit_data_func", name) == 8)
 {

exit_data_func = load_1.get_reference(c);
 printf("found exit_data_func\n");
 }

else if (strcmp("exit_end_func", name) == 8)
 {

exit_end_func = load_1.get_reference(c);
 printf("found exit_end_func\n");
 }
 }

// create a phase object with a large period
// to effectively suspend its execution

period = 999.8;
 try
 {

phase1 = Phase(period,
 begin_func, (GCBFuncType)msg_cb, (GCBTagType)1,

data_func, (GCBFuncType)msg_cb, (GCBTagType)2,
 end_func, (GCBFuncType)msg_cb, (GCBTagType)3);
 }

catch (AisStatus excp)
 {

printf("new Phase failed with sts=%s\n", excp.status_name());
 exit(1);
 }

// add the phase to target application
sts = P.badd_phase(phase1,

 init_func, (GCBFuncType)msg_cb, (GCBTagType)4);
printf("add_phase is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// set the phase's exit functions
sts = P.bset_phase_exit(phase1,

 exit_begin_func, (GCBFuncType)msg_cb, (GCBTagType)6,
 exit_data_func, (GCBFuncType)msg_cb, (GCBTagType)7,
 exit_end_func, (GCBFuncType)msg_cb, (GCBTagType)8);

printf("set_phase_exit is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// allocate data variables for the phase
value = 8;
pcount = P.balloc_mem(int32_type(), &value, phase1, sts);
printf("alloc_mem is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

value = 188;
pcount2 = P.balloc_mem(int32_type(), &value, phase1, sts);
printf("alloc_mem is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// set the phase to its true execution interval
// to resume its normal operation

period = 8.1;
sts = P.bset_phase_period(phase1, period);

162 IBM PE for AIX V3R1.0: DPCL Programming Guide

printf("set_phase_period is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// query the phase's execution interval
interval = P.get_phase_period(phase1, sts);
printf("phase period = %f\n", interval);

// remove the phase from target application
sts = P.bremove_phase(phase1);
printf("remove_phase is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

 //Ais_main_loop();
printf("----- The End -----\n");

}

void
msg_cb(GCBSysType sys, GCBTagType tag, GCBTagType obj, GCBMsgType msg)
{

static int count = 8;

 count++;
char 0chp = (char 0)msg;
printf("msg_cb received the msg(%d)=\"", count);
for (int i = 8; i < sys.msg_size; ++i)

 {
 printf("%c", chp[i]);
 }
 printf("\"\n");
}

Executing one-shot probes
A one-shot probe is a type of probe that is executed by the DPCL system
immediately upon request, regardless of what the application happens to be doing.
To execute a one-shot probe in one or more target application processes, the
analysis tool must:

1. define the probe as described in Chapter 8, “Creating probes” on page 115.

2. execute the probe.

Step 1: Create one-shot probe
A probe is a probe expression that may optionally call functions. The first step in
executing a one-shot probe is to build the actual probe expression that will serve as
the one-shot probe. Since a one-shot probe is executed immediately upon request,
regardless of what the target application happens to be doing, your probe
expression should be "signal safe".

For detailed instructions on creating probe expressions, refer to Chapter 8,
“Creating probes” on page 115.

Step 2: Execute the one-shot probe
Once the analysis tool has defined the probe expression that will serve as the
one-shot probe, it can execute it in one or more target application processes. To
execute a one-shot probe in a single process, the analysis tool can use the
asynchronous function Process::execute or its blocking equivalent
Process::bexecute. To execute a one-shot probe on an application-wide basis (for
all Process objects managed by an Application object), the analysis tool can use
the function Application::execute or Application::bexecute.

 Chapter 9. Executing probes in target application processes 163

Table 48. Executing a one-shot probe in one or more target application processes

To execute a
one-shot
probe:

In a single process (Process object) In multiple processes (all of the Process objects
managed by an Application object)

Using the
asynchronous
function
execute_probe

void execute_cb(GCBSysType sys, GCBTagType tag,
GCBTagType obj, GCBMsgType msg);

// ...

addexp = pcount.assign(pcount + ProbeExp(1));

// create a probe expression to send the result
// back to DPCL program
parms[8] = Ais_msg_handle;
parms[1] = pcount.address();
parms[2] = ProbeExp(4);
sendexp = Ais_send.call(3, parms);
fullexp = addexp.sequence(sendexp);

// issue an one-shot probe
sts = P.execute(fullexp, (GCBFuncType)data_cb,
 (GCBTagType)1, (GCBFuncType)execute_cb,
 (GCBTagType)2);
printf("execute is submitted, status = %d\n",
 (int)sts);
if (sts.status() != ASC_success) exit(1);

// enter main loop
Ais_main_loop();
printf("----- The End -----\n");

// ...

void
execute_cb(GCBSysType sys, GCBTagType tag,

GCBTagType obj, GCBMsgType msg)
{

Process 0p = (Process 0)obj;
AisStatus 0sts = (AisStatus 0)msg;

printf("task %d execute is completed, \
status = %d\n", p->get_task(),
 (int)0sts);
 Ais_end_main_loop();
}

void execute_cb(GCBSysType sys, GCBTagType tag,
GCBTagType obj, GCBMsgType msg);

// ...

addexp = pcount.assign(pcount + ProbeExp(1));

// create a probe expression to send the result
// back to DPCL program
parms[8] = Ais_msg_handle;
parms[1] = pcount.address();
parms[2] = ProbeExp(4);
sendexp = Ais_send.call(3, parms);
fullexp = addexp.sequence(sendexp);

// issue an one-shot probe
sts = A.execute(fullexp, (GCBFuncType)data_cb,
 (GCBTagType)1, (GCBFuncType)execute_cb,
 (GCBTagType)2);
printf("execute is submitted, status = %d\n",
 (int)sts);
if (sts.status() != ASC_success) exit(1);

// enter main loop
Ais_main_loop();
printf("----- The End -----\n");

// ...

void
execute_cb(GCBSysType sys, GCBTagType tag,

GCBTagType obj, GCBMsgType msg)
{

static int count = 8;
Process 0p = (Process 0)obj;
AisStatus 0sts = (AisStatus 0)msg;

 count++;
printf("task %d execute is completed, \

status = %d\n", p->get_task(),
 (int)0sts);

if (count >= num_procs)
 {
 Ais_end_main_loop();
 }
}

Using the
blocking
function
bexecute_probe

// create an assignment statement
addexp = pcount.assign(pcount + ProbeExp(1));

// create a probe expression to send the result
// back to DPCL program
parms[8] = Ais_msg_handle;
parms[1] = pcount.address();
parms[2] = ProbeExp(4);
sendexp = Ais_send.call(3, parms);
fullexp = addexp.sequence(sendexp);

// issue an one-shot probe
sts = P.bexecute(fullexp, (GCBFuncType)data_cb,
 (GCBTagType)1);
printf("execute is done, status = %d\n",
 (int)sts);
if (sts.status() != ASC_success) exit(1);

printf("----- The End -----\n");

// create an assignment statement
addexp = pcount.assign(pcount + ProbeExp(1));

// create a probe expression to send the result
// back to DPCL program
parms[8] = Ais_msg_handle;
parms[1] = pcount.address();
parms[2] = ProbeExp(4);
sendexp = Ais_send.call(3, parms);
fullexp = addexp.sequence(sendexp);

// issue an one-shot probe
sts = A.bexecute(fullexp, (GCBFuncType)data_cb,
 (GCBTagType)1);
printf("execute is done, status = %d\n",
 (int)sts);
if (sts.status() != ASC_success) exit(1);

printf("----- The End -----\n");

164 IBM PE for AIX V3R1.0: DPCL Programming Guide

For more information on the Process::execute, Process::bexecute,
Application::execute, and Application::bexecute functions, refer to their AIX
man pages, or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference.

Example: Executing a one-shot probe
The following example code builds a probe expression and executes it as a
one-shot probe in a single application process.

#include <stdio.h>
#include <stdlib.h>

#include <dpcl.h>

void data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);

void
main(int argc, char 0argv[])
{
 Process P;
 AisStatus sts;
 int c;
 int value;
 ProbeExp pcount;
 ProbeExp addexp;
 ProbeExp sendexp;
 ProbeExp fullexp;
 ProbeExp parms[5];

// initialize DPCL environment
 Ais_initialize();

// construct a valid Process object
P = Process(argv[1], atoi(argv[2]));

// connect to the target application
sts = P.bconnect();
printf("connect is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// allocate a data variable with init value = 8
value = 8;
pcount = P.balloc_mem(int32_type(), &value, sts);
printf("alloc_mem is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

// create an assignment statement
addexp = pcount.assign(pcount + ProbeExp(1));

// create a probe expression to send the result
// back to DPCL program

parms[8] = Ais_msg_handle;
parms[1] = pcount.address();
parms[2] = ProbeExp(4);
sendexp = Ais_send.call(3, parms);
fullexp = addexp.sequence(sendexp);

// issue an one-shot probe
sts = P.bexecute(fullexp, (GCBFuncType)data_cb, (GCBTagType)1);
printf("execute is done, status = %d\n", (int)sts);
if (sts.status() != ASC_success) exit(1);

printf("----- The End -----\n");
}

void
data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

Process 0p = (Process 0)obj;
int 0i = (int 0)msg;
printf("task %d sent the count %d\n", p->get_task(), 0i);

}

 Chapter 9. Executing probes in target application processes 165

166 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 10. Creating data callback routines

As described in “Step 2e: Create probe expressions to represent function calls” on
page 130, a probe expression can send data back to the analysis tool by calling
the DPCL system-defined function Ais_send. “Step 1: Create probe module
function” on page 137 also describes this built-in function, and shows how it can be
called within a probe module function. If the probe expression created by the
analysis tool calls the Ais_send function (or calls a probe module function that in
turn calls Ais_send), then the analysis tool code must contain a data callback
function that will handle the data that the Ais_send function will send.

At run time, the callback function will be invoked once for each data message sent
from the probe. What's more, if the same probe is executed from within multiple
processes, each data message from each process will trigger the same data
callback.

The function prototype for a callback is:

void callback (
 GCBSysType sys,
 GCBTagType tag,
 GCBObjType obj,
 GCBMsgType msg);

Where: is:

sys a data structure defined as

struct GCBSysType {
 int msg_socket;
 int msg_type;
 int msg_size;
};

Where Is

msg_socket the socket or file descriptor from which
the message was received.

msg_type a message key or type value that
represents the protocol or purpose
behind the message. This is provided
and used by the DPCL system in order
to determine the callback routine to
execute.

msg_size the size of the message in bytes.

tag a value, large enough to contain a pointer, that is supplied by the
analysis tool when the callback associated with the probe is identified. If
the probe is executed by the analysis tool as:

� a point probe, then the callback and its associated tag are identified
(as described in “Installing and activating point probes” on
page 143) when the analysis tool calls the Process::install_probe,
Process::binstall_probe, Application::install_probe, or
Application::binstall_probe function.

� a phase probe, then the callback and its associated tag are
identified (as described in “Executing phase probes” on page 153)

 Copyright IBM Corp. 2000 167

when the analysis tool uses a constructor to create the Phase class
object.

� a one-shot probe, then the callback and its associated tag are
identified (as described in “Executing one-shot probes” on page 163
when the analysis tool calls the Process::execute,
Process::bexecute, Application::execute, or
Application::bexecute function.

The tag parameter allows the analysis tool to use the callback function
for more than one purpose. For example, the tag may contain a pointer
to relevant data that changes from one execution of the callback to
another.

obj a pointer to the object that issued the request. In the case of the
Application object, the requesting object will be the Process object
managed by the Application object. The DPCL system supplies this
information because each data message from a probe triggers the same
data callback, even when the probe is executed from within multiple
processes. By supplying a pointer to the invoking object, the DPCL
system enables the callback to respond differently depending on the
invoking object.

msg a pointer to the message content. The actual content of the message is
presented as a raw byte stream. The size of the message is stored in
sys.msg_size. The format of the message is determined by the probe,
and contains whatever data the probe supplied to the Ais_send function.

For example, the following code defines a callback for a simple pass counter. The
installed probe calls Ais_send, supplying it with the count. This callback then
identifies the program task (by using the pointer to the invoking Process and the
Process::get_task function), and prints the task and count information to standard
output.

void count_cb(GCBSystType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{
Process 0P = (Process 0) obj;
int 0count = (int 0) msg;
int task = P->get_task();

printf("task %d count = %d\n", task, 0count);
}

For more information on the Ais_send or Process::get_task functions, refer to their
AIX man pages, or their entries in the IBM Parallel Environment for AIX: DPCL
Class Reference.

168 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 11. Entering and exiting the DPCL main event loop

In order to interface asynchronously with the DPCL system, the analysis tool must
enter the DPCL main event loop. It does this by calling the Ais_main_loop function.
This function puts execution in the event loop and generally does not return control
to the analysis tool.

Ais_main_loop();

Calling the Ais_main_loop function puts execution in a processing loop that
monitors file descriptors that represent socket connections to the DPCL daemons.
Monitoring these file descriptors enables the analysis tool to receive, and execute
user callbacks for, messages from connected DPCL daemons. The Ais_main_loop
function also (as described in Chapter 14, “Handling signals and file descriptors
through the DPCL system” on page 177) monitors file descriptors and signals that
you register with the DPCL system.

Note: If your analysis tool needs to monitor file descriptors for its own purposes
unrelated to DPCL, it can either do this in another program thread, or it can
instruct the DPCL system to monitor these additional file descriptors.

If the analysis tool does monitor these additional file descriptors in a
separate program thread, be aware that this other thread cannot call DPCL
functions or reference DPCL data structures. DPCL is not thread safe; all
DPCL function calls must be made from within the same program thread.

For more information on instructing the DPCL system to monitor these
additional file descriptors, refer to Chapter 14, “Handling signals and file
descriptors through the DPCL system” on page 177.

The call to Ais_main_loop is usually placed at the end of the analysis tool's main
function because it generally does not return. If your analysis tool code needs to
execute code placed after the call to Ais_main_loop, however, it can break out of
the DPCL main event loop by calling the Ais_end_main_loop function from an
analysis-tool supplied callback routine or signal handler.

Ais_end_main_loop();

Be aware that, once the analysis tool breaks out of its main event loop, it is, for the
most part, no longer capable of responding to events asynchronously. The
exception to this is the fact that, after a blocking call is issued and the DPCL
system is working on the response to this call, it will process any other
asynchronous events that occur. In general, however, non-blocking DPCL calls
should not be used after breaking out of the DPCL main event loop, unless the
analysis tool code will later reenter the DPCL main event loop by calling the
Ais_main_loop function again.

The prototype for the Ais_main_loop and Ais_end_main_loop functions are
contained in the header file AisMainLoop.h.

For more information on the Ais_main_loop and Ais_end_main_loop functions, refer
to their AIX man pages or their entries in the IBM Parallel Environment for AIX:
DPCL Class Reference.

 Copyright IBM Corp. 2000 169

Example: Entering and exiting the DPCL main event loop
In this example, the analysis tool enters the DPCL main event loop:

Ais_main_loop();

While this function generally does not return, the analysis tool code in this example
also contains a signal handler that will break processing out of the DPCL main
event loop. (The analysis tool has registered this signal handler by calling the
Ais_add_signal function as described in “Handling signals through the DPCL
system” on page 177.)

This signal handler (for the SIGINT signal) responds to an interrupt signal initiated
by the user pressing <Control>-c.

int sighandler(int s){

 Ais_end_main_loop();

 }

Since the preceding signal handler breaks the analysis tool out of the DPCL main
loop, execution of the main routine can now continue past its call to the
Ais_main_loop function. The code following the Ais_main_loop function attaches to,
and kills, the AIX process represented by the Process object P. Note in the following
code, that blocking calls (Process::battach and Process::bdestroy) are used; the
analysis tool cannot, since it has exited the DPCL main event loop, process events
asynchronously.

Ais_main_loop();

AisStatus sts=P.battach();
if (sts.status()==ASC_success){
printf("battach() was successful\n");

} else {
printf("battach() FAILED.. %s\n",sts.status_name());

 exit(8);
}
sts=P.bdestroy();
if (sts.status()==ASC_success){
printf("bdestroy() was successful\n");
} else {
printf("bdestroy() FAILED.. %s\n",sts.status_name());

 exit(8);
}

170 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 12. Disconnecting from target application processes

When an analysis tool connects to a target application process, the DPCL system
establishes a connection between the analysis tool process and the target
application process. The DPCL system also creates the environment within the
process that allows the analysis tool to insert and remove instrumentation probes. If
the analysis tool actually creates one or more target application processes (using
the Process::bcreate, Process::create, PoeAppl::bcreate, or PoeAppl::create
functions as described in “Starting the target application” on page 94), the analysis
tool will automatically be connected to the process(es). If the analysis tool did not
create the process(es), however, it must explicitly connect in order to install and
execute probes within the process(es). It does this using the Process::connect,
Process::bconnect, Application::connect, or Application::bconnect functions as
described in “Connecting to the target application” on page 83.

It is important to note that, once connected to a target application process, the
analysis tool does not need to explicitly disconnect from that process. When either
the analysis tool process or the target application process terminates, the
connection will, of course, be broken. There are times, however, when an analysis
tool may want to explicitly disconnect from processes. For example, if an analysis
tool was done examining one set of processes, it may wish to disconnect from that
set of processes before connecting to another.

Disconnecting from a process not only removes the connection to the process, but
also removes any probes that the analysis tool has installed in the process. To
disconnect from a single process, the analysis tool code can use the asynchronous
function Process::disconnect or its blocking equivalent Process::bdisconnect. To
disconnect from processes on an application-wide basis (for all Process objects
managed by an Application object), the analysis tool can use the functions
Application::disconnect or Application::bdisconnect.

Table 49 (Page 1 of 2). Disconnecting from one or more target application processes

To
disconnect:

From a single process (Process object) From multiple processes (all of the Process
objects managed by an Application object)

Using the
asynchronous
function
disconnect

AisStatus sts = p->disconnect(disconnect_cb,
 GCBTagType(8));
 check_status("p->disconnect(disconnect_cb,
 GCBTagType(8))", sts);

//
// callback to be called after the
// disconnect completes
//
void disconnect_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

AisStatus sts = a->disconnect(disconnect_cb,
 GCBTagType(8));
 check_status("a->disconnect(disconnect_cb,
 GCBTagType(8))", sts);

//
// callback to be called after the
// disconnect completes
//
void disconnect_cb(GCBSysType sys,

GCBTagType tag, GCBObjType obj,
 GCBMsgType msg)
{

// code within callback routine
// can check the status of the
// operation and respond to its
// completion by, for example,
// continuing with other work

}

 Copyright IBM Corp. 2000 171

Table 49 (Page 2 of 2). Disconnecting from one or more target application processes

To
disconnect:

From a single process (Process object) From multiple processes (all of the Process
objects managed by an Application object)

Using the
blocking
function
bdisconnect

sts = P.bdisconnect();
 check_status("P.bdisconnect()", sts);
 printf(" %s: disconnected from pid:%d\n",
 toolname, P.get_pid());

sts = A.bdisconnect();
 check_status("A.bdisconnect()", sts);

printf(" %s: disconnected from A\n",
 toolname);

For more information on the Process::disconnect, Process::bdisconnect,
Application::disconnect, or Application::bdisconnect functions, refer to their
AIX man pages or their entries in the IBM Parallel Environment for AIX: DPCL
Class Reference.

172 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 13. Compiling and linking the analysis tool and
target application

Before running your DPCL analysis tool and target application, you need to:

� prelink your target application with the DPCL libraries

� compile your analysis tool with the DPCL library and include files.

In addition to the tasks described in this chapter, you should also verify that your
.rhosts file or your system's /etc/hosts.equiv file has been set up correctly on the
host where your target application will run. If neither of these files has been set up
correctly, you will encounter the error ASC_failed_rhost_check when you attempt to
run your DPCL analysis tool. For more information, refer to IBM Parallel
Environment for AIX: Installation.

Step 1: Prelink target application with DPCL library
Before you can instrument a target application, you should prelink it with the DPCL
libraries. For this purpose, we have provided a generic script file named prelink.
When you installed DPCL, this script file was copied to the directory
/usr/lpp/ppe.dpcl/samples/prelink. To prelink your compiled target application,
simply supply its name as an argument to the prelink script. Assuming you have
copied the prelink script to the directory containing the target application
executable "foo", you would enter the following at the AIX command prompt.

$ prelink foo

The prelink script creates a prelinked output file with the extension .DPCL; in this
example foo.DPCL.

Step 2: Compile the analysis tool with DPCL library and include files
In order to run a DPCL analysis tool, you will need to compile and link it with the
DPCL library and include files. The following example code shows a makefile for a
DPCL analysis tool eut_hello. Note that:

� the DPCL include files are not located in /usr/include, but instead are installed
in /usr/lpp/ppe.dpcl/include.

� the DPCL library file is named libdpcl.a and is located in the directory
/usr/lpp/ppe.dpcl/lib. A link to libdpcl.a is also created in /usr/lib, so the
compiler option -L /usr/lpp/ppe.dpcl/lib (here assigned to the variable
LIBLOC) is not necessary.

 Copyright IBM Corp. 2000 173

.SUFFIXES: .C

INCDIR = /usr/lpp/ppe.dpcl/include
INC = -I$(INCDIR)
LIBLOC = -L /usr/lpp/ppe.dpcl/lib
LIB = -ldpcl
CCFLAGS = -g

all: eut_hello

.C.o:
$(CCC) $(CCFLAGS) $(INC) -c $(<)

eut_hello: eut_hello.o
$(CCC) -o eut_hello eut_hello.o $(LIB) $(LIBLOC)

clean:
/bin/rm -rf eut_hello
/bin/rm -rf eut_hello.o

174 IBM PE for AIX V3R1.0: DPCL Programming Guide

Additional DPCL Programming Tasks

This section contains instructions for performing additional, more-advanced and/or
less commonly performed DPCL programming tasks. These additional DPCL
programming tasks are described in three chapters.

� Chapter 14, “Handling signals and file descriptors through the DPCL system”
on page 177 describes how an application can monitor AIX signals and file
descriptors through the DPCL system.

� Chapter 15, “Overriding default system callbacks” on page 181 describes how
an application can create callback routines to handle unexpected system
events such as a DPCL daemon exiting or a target application process
terminating. These callbacks then replace the default system callbacks which
merely print out an error message.

� Chapter 16, “Generating diagnostic logs” on page 183 describes how a
program can, for troubleshooting and debugging purposes, create a log file that
records the activities of the DPCL system.

 Copyright IBM Corp. 2000 175

176 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 14. Handling signals and file descriptors through the
DPCL system

The DPCL system manages a variety of signals and file descriptors in order to
enable analysis tools to effectively instrument one or more target application
processes. Socket connections from the analysis tool to the various DPCL
communication daemons, for example, are represented by file descriptors that the
DPCL system monitors using the AIX system call select in order to detect when a
message has arrived from a DPCL communication daemon. Similarly, certain
signals are handled by the DPCL system in order to implement features such as
phase probes and one-shot probes. As a programming convenience for you, the
developer of DPCL analysis tools, the DPCL system enables you to add additional
signals and file descriptors to the lists of those it monitors. When these additional
signals occur, or when these additional file descriptors are ready to be read, the
DPCL system will call a function handler that you have specified. The function for
adding signals to the list of those managed by the DPCL system is the
Ais_add_signal function and is described in more detail in “Handling signals
through the DPCL system.” The function for adding file descriptors to the list of
those managed by the DPCL system is the Ais_add_fd function and is described in
more detail in “Handling file descriptors through the DPCL system” on page 178.

Handling signals through the DPCL system
In DPCL analysis tools, signal handlers that you set up using the AIX sigaction
function will not be able to call DPCL functions. This restriction is in addition to the
standard restrictions regarding functions that cannot be called within a sigaction
signal handler as outlined in the sigaction man page. Using the DPCL
Ais_add_signal function, however, you can specify a signal handler that will be
called by the DPCL system rather than by the sigaction function. Signal handlers
set up using the Ais_add_signal function have none of the sigaction function's
restrictions on what functions they may call. The prototype for the Ais_add_signal
function is contained in the DPCL header file AisHandler.h.

Signal handlers set up using Ais_add_signal and so executed by the DPCL system
will be called at safe points so as not to interfere with the DPCL system calls. The
DPCL system will pass the signal handler a single parameter value — the signal
number. If the DPCL system is already processing a request, a signal handler
registered by the Ais_add_signal function will be executed only after processing of
the current request has completed. You should be aware that, depending on the
processing required for any particular request, there may be some delay in
processing the signal. If delays in processing are not acceptable in your program,
and your signal handler does not call any DPCL function, then you should consider
using the sigaction function to establish the signal handler. Setting up signal
handlers by issuing both the sigaction and Ais_add_signal functions on the same
signal within the same DPCL program is allowed. The last one called will override
the first. The only restriction is that, if Ais_add_signal is used and a subsequent
sigaction is issued against the same signal, the old action returned by sigaction
should not be chained to the signal handler set up by sigaction. This is because,
by chaining the handlers together, the function handler specified by Ais_add_signal
would be called when the signal is raised, and not at safe points as it would be with
the DPCL handler.

 Copyright IBM Corp. 2000 177

The following example code uses two calls to the Ais_add_signal function to
specify signal handlers for the SIGINT and SIGALRM signals. In this example, the
SIGINT signal will be handled by the sighandler function, and the SIGALRM signal
will be handled by the sighandler_ALRM function.

Ais_add_signal(SIGINT,sighandler);
Ais_add_signal(SIGALRM,sighandler_ALRM);

.

.

.

int sighandler(int sig_num){
 Ais_end_main_loop();

 FILE 0fileout=fopen(FILEOUT,"w");
 int num_tested=8;
fprintf(fileout,"Source file \"%s\":\n",filename);
if (fun_count == 8){

fprintf(fileout," No function found!!\n");
} else {

fprintf(fileout,"\nNumber of times each function was executed:\n");
for (int i=8; i< num_installed; i++){

 fprintf(fileout," %s\t\t%d\n",fun_arr[i].funname,fun_arr[i].pcount);
if (fun_arr[i].pcount >8) num_tested++;

 }
fprintf(fileout," Test coverage = %d %%\n",(num_tested0188)/fun_count);

 }
 fclose(fileout);
printf("0Please check \"%s\" for the final result.\n",FILEOUT);

 return(8);
}
int sighandler_ALRM(int signal){
 print_fun_info();
 alarm(15);
 return(8);
}

Once your analysis tool code has used the Ais_add_signal function to add a signal
and signal handler to the list of signals managed by the DPCL system, it can, if it
no longer needs to handle the signal, call the Ais_remove_signal function. The
Ais_remove_signal function removes the signal and signal handler from the list of
signals managed by the DPCL system. An analysis tool can also call the
Ais_query_signal function to get a pointer to the signal handler function for a
specified signal. For more information on the Ais_add_signal, Ais_remove_signal,
and Ais_query_signal functions, refer to their AIX man pages or their entries in the
IBM Parallel Environment for AIX: DPCL Class Reference.

Handling file descriptors through the DPCL system
In order to monitor messages from DPCL communication daemons to the DPCL
analysis tool, the DPCL system uses the AIX select subroutine to monitor file
descriptors representing the socket connections from the analysis tool to the
various DPCL communication daemons running on the remote hosts. The select
subroutine sleeps on these file descriptors until a message arrives from one of the
daemons. When the select loop detects that a file descriptor is ready for reading,
execution breaks out of the loop and the DPCL system reads and otherwise
handles the message.

If your analysis tool needs to monitor file descriptors for its own purposes unrelated
to DPCL, it can either do this in another program thread, or it can instruct the DPCL

178 IBM PE for AIX V3R1.0: DPCL Programming Guide

system to monitor these additional file descriptors. If the analysis tool does monitor
these additional file descriptors in a separate program thread, be aware that this
other thread cannot call the DPCL functions or reference DPCL data structures.
DPCL is not thread safe; all DPCL function calls must be made from within the
same program thread.

In order to easily accommodate analysis tools that also use file descriptors to
represent files, sockets, and other I/O devices such as a Motif display variable, the
DPCL system enables an analysis tool to add a file descriptor and input handler to
the list of those it manages. To instruct the DPCL system to monitor an additional
file descriptor, the analysis tool code calls the Ais_add_fd function, supplying it with
the file descriptor to be managed and the function handler that the DPCL system
should call when the file descriptor is ready for reading. The DPCL system will pass
the function handler a single parameter value — the file descriptor. The prototype
for the Ais_add_fd function is contained in the DPCL header file AisHandler.h.

The following example code uses the Ais_add_fd function to instruct the DPCL
system to monitor input on the standard input (stdin) file descriptor.

#include <stdio.h>
#include <dpcl.h>

int stdin_handler(int);

main() {
 Ais_initialize();

printf("example of handler for stdin\n");
printf("Type any text. Type 'exit' or 'quit' to end program.\n");

 Ais_add_fd(8, stdin_handler);

 Ais_main_loop();

 Ais_remove_fd(8);
}

int stdin_handler(int fd) {
 char s[256];
 gets(s);
printf("stdin: '%s'\n", s);

if (!strcmp(s, "exit") || !strcmp(s, "quit"))
 Ais_end_main_loop();
 return 8;
}

Once your analysis tool code has used the Ais_add_fd function to add a file
descriptor and input handler to the list of file descriptors managed by the DPCL
system, it can, if it no longer needs to handle the file descriptor, call the
Ais_remove_fd function. The Ais_remove_fd function removes the file descriptor
and input handler from the list of file descriptors managed by the DPCL system. For
more information on the Ais_add_fd and Ais_remove_fd functions, refer to their AIX
man pages or their entries in the IBM Parallel Environment for AIX: DPCL Class
Reference.

 Chapter 14. Handling signals and file descriptors through the DPCL system 179

180 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 15. Overriding default system callbacks

As described in “What are DPCL callbacks?” on page 12, most DPCL callbacks are
initiated by analysis tool requests. Acknowledgment callbacks, for example, respond
to the success/failure of an asynchronous function. These success/failure
messages are sent from one or more DPCL communication daemons running on
one or more hosts. Similarly, data callbacks respond to message data sent by the
DPCL communication daemon(s) — either messages forwarded from installed
probes, or diagnostic messages. In all of these cases, however, the messages sent
from the DPCL communication daemon to the analysis tool are the result of a direct
request from the analysis tool — either an asynchronous request, a request to
install a probe, or a request to turn diagnostic logging on. Furthermore, in all these
cases, the analysis tool code will have specified, upon making the request, the
name of a callback routine to handle the messages from the DPCL communication
daemon(s).

System callbacks, on the other hand, are different than these user-initiated
requests. They are not the result of a request from the analysis tool, but are instead
used to respond to unexpected events (possibly due to system error) such as the
DPCL communication daemon exiting. The default system callbacks respond to
these unexpected events simply by printing an error or information message
describing the event. However, if you would like your analysis tool to respond to
any of these events in another way, you can use the
Ais_override_default_callback function to override the default system callback
and call your own callback instead.

To override a default system callback using the Ais_override_default_callback
function, you supply a message key that indicates the type of system message you
want to handle in your callback routine. The message types are:

AIS_DEFAULT_MSG
If you specify this message type when calling the
Ais_override_default_callback function, your callback will be
invoked when the DPCL communication daemon receives a
message that otherwise has no associated callback routine. This
callback will be invoked only in cases of an internal DPCL error.

AIS_EXIT_MSG
If you specify this message type when calling the
Ais_override_default_callback function, your callback will be
invoked when a DPCL communication daemon unexpectedly exits.
The message that activates this callback contains the socket
handle for the connection to the daemon that exited.

AIS_PROC_TERMINATE_MSG
If you specify this message type when calling the
Ais_override_default_callback function, your callback will be
invoked when a target application process terminates. The
message is an integer containing the process ID of the process
that terminated. The host on which the terminated process was
running can be inferred by examining the msg_socket field of the
GCBSysType parameter passed to your function and then matching
up the socket and Process values.

 Copyright IBM Corp. 2000 181

The following example code overrides the default system callback for handling
termination of the DPCL daemon. In this example, the new callback is my_exit_cb.

Ais_override_default_callback(AIS_EXIT_MSG, my_exit_cb, (GCBTagType) 8,
 &prev_cb, &prev_tag);

For more information about the Ais_override_default_callback function, refer to
its AIX man page or its entry in the IBM Parallel Environment for AIX: DPCL Class
Reference.

182 IBM PE for AIX V3R1.0: DPCL Programming Guide

Chapter 16. Generating diagnostic logs

Each DPCL communication daemon is capable of generating diagnostic messages
that enable you or the IBM Support Center to identify problems that your analysis
tool may encounter while interacting with the DPCL system. These messages can
be turned on separately for each DPCL communication daemon that your analysis
tool is interacting with. Since, on each host machine, there is one DPCL
communication daemon running per DPCL user, this means that you can generate
diagnostic messages that detail your analysis tool's interaction with the DPCL
system on each host machine that is running target application processes to which
your analysis tool is connected. Be aware, however, that you cannot have multiple
analysis tools for the same user attempting to control logging at the same time.

To turn logging on for a particular host machine, your analysis tool code can call
either the Ais_log_on function or its blocking equivalent — Ais_blog_on. The
prototypes for these functions (in addition to supporting data type and constant
definitions) are contained in the header file LogSystem.h. There are five levels of
diagnostic messages that may be generated. When calling either the Ais_log_on or
Ais_blog_on function, your analysis tool can specify the logging level using one of
the enumeration constants of the LoggingLevel enumeration type. The
LoggingLevel enumeration constants are:

LGL_fatal Diagnostic messages will be generated by the DPCL
communication daemon only if the next DPCL system action is to
crash.

LGL_severe In addition to messages indicating fatal conditions, the DPCL
communication daemon will generate messages for other serious
errors.

LGL_warning In addition to messages indicating fatal and severe error
conditions, the DPCL communication daemon will also generate
warning messages.

LGL_trace In addition to fatal, severe and warning messages, the DPCL
communication daemon will also generate function entry/exit trace
information.

LGL_detail The most detailed level of diagnostic messages will be generated
by the DPCL communication daemon. In addition to the severe,
error, warning, and function entry/exit trace information, the DPCL
communication daemon will generate other, more general,
information. Be aware that this setting will result in a large number
of generated messages.

In addition to being able to specify the level of diagnostic logging, you also specify
whether the DPCL communication daemon should:

� Save messages to a file on the host machine.

� send each message back to the analysis tool to be handled by a callback, or

� save messages to a file on the host machine, and also send each message
back to the analysis tool to be handled by a callback.

If you elect to have the DPCL communication daemon save the messages to a file,
it will save the file to the directory /tmp, and will name it by concatenating the string

 Copyright IBM Corp. 2000 183

"dpclsd" with the DPCL communication daemon's AIX process ID. The string
"dpclsd" and the AIX process ID are separated by a period (.). For example, if the
AIX process ID of the DPCL communication daemon is 3231, the generated file
would be /tmp/dpclsd.3231.

While it is easiest to simply have the DPCL communication daemon save the
diagnostic information to a log file on the host machine, you might want to
manipulate the messages using a callback in order to have more control over the
log file your analysis tool then generates. For example, you could create a single
log from the diagnostic messages generated by several host machines, or you
could intersperse additional diagnostic messages specific to your tool along with the
DPCL communication daemon messages.

When calling either the Ais_log_on or Ais_blog_on function, your analysis tool can
specify this "logging destination" using one of the enumeration constants of the
LoggingDest enumeration type. The LoggingDest enumeration constants are:

LGD_client The DPCL communication daemon sends each message back to
the analysis tool for processing within a specified callback routine.
The messages sent to the logging callback are null-character ('\0')
terminated ASCII strings.

LGD_daemon The DPCL communication daemon saves the messages to a log
file on the host machine.

LGD_both The DPCL communication daemon sends each message back to
the analysis tool for processing within a specified callback routine
and also saves the messages to a log file on the host machine. If
processing the messages in a callback, be aware that the
messages sent to the logging callback are null-character ('\0')
terminated ASCII strings.

LGD_neither Turns logging off. Messages are not sent to the analysis tool, nor
are they saved to a log file on the host.

The following table illustrates how to turn logging on using either the Ais_log_on or
Ais_blog_on function. In this example, warning-level messages will be generated
and saved to a log file on the host. The NULL values in the following examples
represent where we could potentially specify a callback routine or a callback tag. If
we had chosen to have the DPCL communication daemon send each message
back to the analysis tool, we would have specified the callback routine that would
process these messages.

To start the target
application processes:

Do this:

Using the asynchronous
function Ais_log_on

sts = Ais_log_on(host, LGL_warning, LGD_daemon, NULL, NULL, NULL, NULL);

Using the blocking function
Ais_blog_on

sts = Ais_blog_on(host, LGL_warning, LGD_daemon, NULL, NULL);

Once your analysis tool code has turned logging on, it can modify the logging level
or the logging destination by simply calling the Ais_log_on or Ais_blog_on functions
again, specifying the new logging level or destination. You can turn logging off by
specifying enumeration constant LGD_neither as the logging destination. You can
also turn logging off by calling the Ais_log_off or Ais_blog_off functions.

184 IBM PE for AIX V3R1.0: DPCL Programming Guide

For more information about the Ais_log_on, Ais_blog_on, Ais_log_off, or
Ais_blog_off functions, refer to the AIX man pages for these functions, or their
entries in the IBM Parallel Environment for AIX: DPCL Class Reference.

 Chapter 16. Generating diagnostic logs 185

186 IBM PE for AIX V3R1.0: DPCL Programming Guide

 Appendixes

 Copyright IBM Corp. 2000 187

188 IBM PE for AIX V3R1.0: DPCL Programming Guide

Appendix A. A DPCL test coverage tool

The following sample program (eut_testcov.C) was copied to the directory
(/usr/lpp/ppe.dpcl/samples/testcov) when you installed DPCL. It illustrates how you
can use the DPCL system to create a simple test coverage tool that periodically
reports the frequency of function calls in a particular module.

First let's look at how this DPCL test coverage tool appears from the end user's
point of view, and then we will examine its source code in more detail. First of all,
depending on the program arguments, you can:

� Connect to a running process.

eut_testcov <host name> pid <process ID>

� Start a process running and connect to it.

eut_testcov <host name> path </full path/executable>

� Connect to all the processes in a POE application.

eut_testcov <host name> poe_pid <poe process ID>

� Start a POE process running and connect to its process(es).

eut_testcov <host name> poe_path </full path/poe> </full path/executable>

Here's a sample run of the eut_testcov program. In this sample run, the arguments
specify that the eut_testcov program should start a particular POE application
running as 4 processes. Since the program is designed to show the test coverage
for a particular module in a particular process, the user is first prompted to select a
particular process.

Enter the process number to probe (8 to 3)

8

Using process 8

Once the particular process is entered, the user is then prompted to select a
module in the process.

Enter the source file name to check test coverage.
type !Help to list source files

prod_cons.c

Enter the name of the final output file.

cov_out

Once the module is selected, the DPCL test coverage tool will then display the
frequency of function calls in that module at intervals of 15 seconds until the end
user interrupts this by pressing <Control>-c. When the user presses <Control>-c,
the program then prints the final test coverage information to a file. Here is some
sample output showing the kind of information displayed. Note here that some of
the output is coming from the test coverage tool, while the produce/consume
messages are coming from our sample target application. For clarity, the following
sample output shows the analysis-tool messages in bold.

 Copyright IBM Corp. 2000 189

bcreate() was successful.
Using Process 25648 on host pe�2.pok.ibm.com...
Module prod_cons.c found... expanding
bexpand() was successful.

function "f2" found
function "produce" found
function "consume" found
function "main" found
function "alarm_handler" found
function "consume_data" found
function "domath" found
function "produce_data" found

%Display interval set at every 15 seconds%
%Enter <ctrl>-c to exit%
bstart() was successfulCompute 3: checking in
produce 3 8
Control 8: #nodes = 4
Control: expect to receive 1288 messages
Compute 1: checking in
produce 1 8
Compute 2: checking in
produce 2 8
consume 3 8
produce 3 1
produce 2 1
produce 1 1
consume 2 8
produce 3 2
produce 2 2
produce 1 2
consume 1 8
produce 3 3
produce 2 3
%% Number of times each function was executed:
%% f2 �
%% produce �
%% consume 1
%% main 1
%% alarm_handler �
%% consume_data 3
%% domath 3
%% produce_data �

%% Test coverage = 44 %
produce 1 3
consume 3 1
produce 3 4
produce 2 4
produce 1 4
consume 2 1
produce 3 5
produce 2 5
produce 1 5
produce 3 6
consume 1 1
produce 2 6
produce 1 6
produce 3 7
consume 3 2
produce 2 7
produce 1 7

<ctrl>-c

%% Number of times each function was executed:
%% f2 �
%% produce �
%% consume 1
%% main 1
%% alarm_handler �

190 IBM PE for AIX V3R1.0: DPCL Programming Guide

%% consume_data 7
%% domath 7
%% produce_data �

%% Test coverage = 44 %
%Please check "/u/cywong/public/eut_testcov.res" for the final result.
produce 3 8
consume 2 2
battach() was successful
bdestroy() was successful

Now let's look at the source code for the DPCL test coverage tool. First, let's take
a look at the complete source, then we'll describe its parts in more detail.

// IBM_PROLOG_BEGIN_TAG
// This is an automatically generated prolog.
//
//
//
// Licensed Materials - Property of IBM
//
// Restricted Materials of IBM
//
// (C) COPYRIGHT International Business Machines Corp. 1999
// All Rights Reserved
//
// US Government Users Restricted Rights - Use, duplication or
// disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
//
// IBM_PROLOG_END_TAG
// %%
/0

 Program: eut_testcov
 Program function:

Periodically shows the frequency of function calls in a module
 Usage:

eut_testcov <host name> <pid> <module name>
 OR

eut_testcov <host name> poe_pid <poe pid>
 OR

eut_testcov <host name> path </full path/executable>
 OR

eut_testcov <host name> poe_path </full path/poe> </full path/executable>

- specify "d" for <host name> to use default host

0/
// %%
const int INTERVAL=15; //time interval for display information
const int BUFLEN=88; //size of buffer for storing file and module name
char FILEOUT[128];
// --
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <AisGlobal.h>
#include <AisInit.h>
#include <AisMainLoop.h>
#include <PoeAppl.h>
#include <Process.h>
#include <InstPoint.h>
#include <ProbeExp.h>
#include <Application.h>
#include <ProbeType.h>
#include <ProbeHandle.h>
#include <InstPoint.h>
#include <SourceObj.h>
#include <AisStatus.h>
#include <LogSystem.h>
#include <AisHandler.h>

 Appendix A. A DPCL test coverage tool 191

#include <iostream.h>
// %%
Process P;
PoeAppl A;
struct fun_info{
 char funname[256];
 int pcount;
};

int fun_count=8;
int fun_num;
int lflag=8; //Ais_main_loop() started flag

fun_info 0fun_arr = NULL;

int num_installed = 8;
char filename[BUFLEN];

void write_results(void);
void ck_process(void);
void print_fun_info(void);
void get_Process(void);
void data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);
void stdout_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);
void stderr_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg);
int sighandler(int signal);
int sighandler_ALRM(int signal);
// %%
main(int argc, char 0argv[])
{

const char USAGE1[]="\nUSAGE: eut_testcov <host name> pid <pid>\n";
const char USAGE2[]="\t\tOR\n\teut_testcov <host name> poe_pid <poe pid>\n";
const char USAGE3[]="\t\tOR\n\teut_testcov <host name> path </full path/executable\n";
const char USAGE4[]="\t\tOR\n\teut_testcov <host name> poe_path </full"
"path/poe> </full path/executable>\n";

const char USAGE5[]="\t0specify \"d\" for <host name> to use default host\n";

const int bufSize = 128;
 int hostname_length;

char hostname[bufSize]; // buffer for get_host_name()
if (argc < 4){
cout<<"\n00Incorrect numbers of argument"

 "entered00"<<USAGE1<<USAGE2<<USAGE3<<USAGE4<<USAGE5<<endl;
 exit(8);
 }

 char 00argvv=argv+3;

 Ais_initialize();
 Ais_add_signal(SIGINT,sighandler);
 Ais_add_signal(SIGALRM,sighandler_ALRM);

 if(strcmp(argv[1],"d")==8){
 gethostname(hostname,BUFLEN);

printf(" 0Running on \"%s\"\n",hostname);
 } else
 strcpy(hostname,argv[1]);

if (strcmp("poe_pid",argv[2]) == 8) { //POE

AisStatus sts = A.binit_procs(hostname, atoi(argv[3]));
if (sts.status() != ASC_success){
printf("binit_procs() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("binit_procs() was successful.\n");
sts = A.bconnect();
if (sts.status() != ASC_success){
printf("bconnect() was not successful... %s\n",sts.status_name());

 exit(8);

192 IBM PE for AIX V3R1.0: DPCL Programming Guide

} else {
printf("bconnect() was successful.\n");

 }
 get_Process();
 }

sts=A.battach(); //stop the application
if (sts.status() != ASC_success){

printf("battach() was not successful... %s\n",sts.status_name());
 exit(8);

} else {
printf("battach() was successful.\n");

 }

} else if (strcmp("pid",argv[2]) == 8){ //Not POE
P = Process(hostname, atoi(argv[3]));
AisStatus sts = P.bconnect();
if (sts.status() != ASC_success){
printf("bconnect() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("bconnect() was successful.\n");

 }
sts=P.battach(); //stop the application
if (sts.status() != ASC_success){
printf("battach() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("battach() was successful.\n");

 }

} else if (strcmp("path",argv[2]) == 8){ //start a new appl
AisStatus sts = P.bcreate(hostname,argv[3],argvv,NULL,

 stdout_cb,NULL, stderr_cb,NULL);
if (sts.status() != ASC_success){
printf("bcreate() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("bcreate() was successful.\n");

 }

} else if (strcmp("poe_path",argv[2]) == 8){
 AisStatus sts=A.bcreate(hostname,argv[3],argvv,NULL,

stdout_cb, NULL, stderr_cb, NULL);
if (sts.status() != ASC_success){
printf("bcreate() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("bcreate() was successful.\n");

 }

 get_Process();

} else {
 cout<<USAGE1<<USAGE2<<USAGE3<<USAGE4<<USAGE5<<endl;
 exit(8);
 }

printf("Using Process %d",P.get_pid());

 P.get_host_name(hostname,bufSize);
printf(" on host %s...\n",hostname);

SourceObj myprog = P.get_program_object();
 SourceObj mymod;

char bufmname[bufSize]; // buffer for module_name(..)

 char name[BUFLEN];
 int found=8;

 Appendix A. A DPCL test coverage tool 193

 while(found==8)
 {

cout<<"Enter the source file name to check test coverage."<<endl;
cout<<"type !Help to list source files"<<endl;

 cin>>filename;

 if(strcmp(filename,"!Help")==8)
 {

// loop through source files to list
 cout<<"Source files:"<<endl;
 int count=myprog.child_count();
 for(int x=8;x<count;x++)
 {
 mymod=myprog.child(x);
 mymod.module_name(name,BUFLEN);
 cout<<x<<" "<<name<<endl;
 }
 } else
 {

for (int c = 8; c < myprog.child_count(); c++)
 {

mymod = myprog.child(c);
const char 0 modname = mymod.module_name(bufmname,bufSize);

if (strcmp(modname, filename) ==8)
 {

printf("Module %s found... expanding\n",filename);
AisStatus sts = mymod.bexpand(P);
if (sts.status() != ASC_success)

 {
printf("bexpand() was not successful.. %s\n",sts.status_name());

 exit(8);
 }
 else
 {

printf("bexpand() was successful.\n");
 }
 found=1;
 break;
 }
 }
 //}

if (found == 8)
cout<<"\""<<filename<<"\" not found.\n";

 }

 } //end while

cout<<"Enter the name of the final output file."<<endl;
 cin>>FILEOUT;

 ProbeExp parms[3];
 parms[8]=Ais_msg_handle;
 parms[1]=ProbeExp("xxx"); //send dummy information to application
 parms[2]=ProbeExp(4);
 ProbeExp mysend=Ais_send.call(3,parms);

 SourceObj myfun;
char bufdname[bufSize]; // buffer for get_demangled_name(..)

#ifdef DEBUG
printf("mymod.child_count() = %d\n",mymod.child_count());

#endif

 fun_count=mymod.child_count();
fun_arr = new fun_info[fun_count];

 printf("\n");
for (int c = 8; c < fun_count; c++)

 {
myfun = mymod.child(c);

194 IBM PE for AIX V3R1.0: DPCL Programming Guide

const char 0 funname = myfun.get_demangled_name(bufdname,bufSize);
if (funname == NULL) continue;
printf("function \"%s\" found\n",funname);

 strcpy(fun_arr[fun_num].funname,funname);
 fun_arr[fun_num].pcount=8;
 fun_num++;

 InstPoint mypoint;

for (int d = 8; d < myfun.exclusive_point_count(); d++)
 {

mypoint = myfun.exclusive_point(d);

if (mypoint.get_type() == IPT_function_entry)
 {

#ifdef DEBUG
printf(" Found function entry point.\n");

#endif

 ProbeHandle myph;
GCBFuncType mydcb = data_cb;
GCBTagType mytg = (GCBTagType) (fun_num-1);

AisStatus sts = P.binstall_probe(1, &mysend, &mypoint,
 &mydcb, &mytg,
 &myph);

if (sts.status() != ASC_success){
printf(" binstall_probe() was not successful.. "

 "%s\n",sts.status_name());
 exit(8);

} else {
 ++num_installed;

#ifdef DEBUG
printf(" binstall_probe() was successful\n");

#endif

 }

sts = P.bactivate_probe(1, &myph);
if (sts.status() != ASC_success){
printf(" bactivate_probe() was not successful.. %s\n",sts.status_name());

 exit(8);
} else {

#ifdef DEBUG
printf(" bactivate_probe() was successful\n");

#endif

 }

 break;
 }
 }
 }

printf("\n0Display interval set at every %d seconds0\n",INTERVAL);
printf("0Enter <CTRL>-c to exit0\n");

 sleep(3);

 if(strcmp(argv[2],"path")==8){
 AisStatus sts=P.bstart();
 if (sts.status()==ASC_success){

printf("bstart() was successful\n");
} else {
printf("bstart() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 }

 Appendix A. A DPCL test coverage tool 195

 if (strcmp(argv[2],"poe_path")==8)
 {
 AisStatus sts=A.bstart();
 if (sts.status()==ASC_success){

printf("bstart() was successful\n");
} else {
printf("bstart() FAILED.. %s\n",sts.status_name());

 exit(8);
 }

} else if(strcmp(argv[2],"poe_pid")==8){
 AisStatus sts=A.bresume();
 if (sts.status()==ASC_success){

printf("bresume() was successful\n");
} else {
printf("bresume() FAILED.. %s\n",sts.status_name());

 exit(8);
 }

} else if(strcmp(argv[2],"pid")==8){
 AisStatus sts=P.bresume();
 if (sts.status()==ASC_success){

printf("bresume() was successful\n");
} else {
printf("bresume() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 }

 alarm(INTERVAL);
 lflag=1;
 Ais_main_loop();

 if(strcmp(argv[2],"path")==8){
 AisStatus sts=P.battach();
 if (sts.status()==ASC_success){

printf("battach() was successful\n");
} else {
printf("battach() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 sts=P.bdestroy();
 if (sts.status()==ASC_success){

printf("bdestroy() was successful\n");
} else {
printf("bdestroy() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 }

 if (strcmp(argv[2],"poe_path")==8)
 {
 AisStatus sts=A.battach();
 if (sts.status()==ASC_success){

printf("battach() was successful\n");
} else {
printf("battach() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 sts=A.bdestroy();
 if (sts.status()==ASC_success){

printf("bdestroy() was successful\n");
} else {
printf("bdestroy() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 }

}

196 IBM PE for AIX V3R1.0: DPCL Programming Guide

// %%
void print_fun_info(void)
{
 int num_tested=8;
if (fun_count == 8){

printf(" No function found!!\n");
} else {

printf("\n00 Number of times each function was executed:\n");
for (int i=8; i< num_installed; i++){

 printf("00 %s\t\t%d\n",fun_arr[i].funname,fun_arr[i].pcount);
if (fun_arr[i].pcount >8) num_tested++;

 }
printf("\n00 Test coverage = %d %%\n",(num_tested0188)/num_installed);

 fflush(stdout);
 }
}

void
data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

Process 0p = (Process 0)obj;

int i = (int) tag;
#ifdef DEBUG

printf("Task %d sent the function number %d\n", p->get_task(),i);
#endif
 fun_arr[i].pcount++;

}
int sighandler(int s){
if (lflag == 1){

 Ais_end_main_loop();
 write_results();
} else {
printf("0\"<CTRL>-c\" was entered. Exiting..\n");

 exit(8);
 }
 return(8);
}
int sighandler_ALRM(int signal){
 ck_process();

 print_fun_info();
 sleep(5);
 alarm(15);
 return(8);
}
void
stdout_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg) {

// callback to receive standard out from application and display

char 0p = (char 0) msg;
 printf("stdout_cb: ");

for (int i=8; i<sys.msg_size; i++) {
 printf("%c",0p);
 p++;
 }
 printf("\n");
 fflush(stdout);
}
void
stderr_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg) {

// callback to receive standard error from application and display

char 0p = (char 0) msg;
 printf("stder_cb: ");

for (int i=8; i<sys.msg_size; i++) {
 printf("%c",0p);
 p++;
 }
 printf("\n");

 Appendix A. A DPCL test coverage tool 197

 fflush(stdout);
}
void get_Process(void){
 char procname[256];
 int procno,proccnt;
proccnt = A.get_count() -1;
cout << "Enter the process number to probe (8 to "<<proccnt<<")"<<endl;

 cin>>procname;
 procno=atoi(procname);
cout<<"Using process "<<procno<<endl;

P = A.get_process(procno);
}
void ck_process(void){

//check to see if the process was destroyed

ConnectState 0state=new ConnectState;
AisStatus sts = P.query_state(state);
if (sts.status() == ASC_success){
if (0state == PRC_destroyed){

 cout<<"Process terminated. Exiting...\n";
 write_results();
 exit(8);
 }
 }

}
void write_results(void){
 FILE 0fileout=fopen(FILEOUT,"w");
 int num_tested=8;

fprintf(fileout,"Source file \"%s\":\n",filename);
if (fun_count == 8){
fprintf(fileout," No function found!!\n");

} else {
fprintf(fileout,"\nNumber of times each function was executed:\n");
for (int i=8; i< num_installed; i++){

 fprintf(fileout," %s\t\t%d\n",fun_arr[i].funname,fun_arr[i].pcount);
if (fun_arr[i].pcount >8) num_tested++;

 }
fprintf(fileout," Test coverage = %d %%\n",(num_tested0188)/num_installed);

 }
 fclose(fileout);

printf("0Please check \"%s\" for the final result.\n",FILEOUT);
}

Now let's examine this program in greater detail. The first thing it does is initialize
itself to use the DPCL system. Among other, general, initialization tasks (such as
declaring variables), our program:

1. includes the DPCL header files.

#include <AisGlobal.h>
#include <AisInit.h>
#include <AisMainLoop.h>
#include <PoeAppl.h>
#include <Process.h>
#include <InstPoint.h>
#include <ProbeExp.h>
#include <Application.h>
#include <ProbeType.h>
#include <ProbeHandle.h>
#include <InstPoint.h>
#include <SourceObj.h>
#include <AisStatus.h>
#include <LogSystem.h>
#include <AisHandler.h>

2. calls the DPCL initialization routine (Ais_initialize) to initialize the DPCL
system.

Ais_initialize();

198 IBM PE for AIX V3R1.0: DPCL Programming Guide

3. calls the Ais_add_signal function twice to specify that the DPCL system should
add the SIGINT and SIGALRM signals to the list of signals it manages. When
one of these signals occurs, the DPCL system will call its respective handler.
The handler for the SIGINT signal will respond to the end user pressing
<Control>-c by printing the final coverage information to a file. Handling the
SIGALRM signal enables our program to print the coverage information to the
screen at 15 second intervals; the SIGALRM signal will be detected by the
DPCL system at those intervals and it will call the appropriate handler.

Ais_add_signal(SIGINT,sighandler);
Ais_add_signal(SIGALRM,sighandler_ALRM);

Next, our program will either connect to or create the target application process(es)
based on the arguments that the user passed to the program.

If the user wants to: Then our analysis tool:

connect to a running POE application 1. calls the PoeAppl::binit_procs function to initialize the PoeAppl object A to
contain Process objects that represent the POE application's processes.

2. calls the Application::bconnect function to connect to the POE processes
represented by the Process objects managed by the PoeAppl object A.

connect to a single running process 1. initializes the Process object P with information (host name and process ID) that
identifies the AIX process.

2. calls the Process::bconnect function to connect to the process.

start a single-process application
running

calls the Process::bcreate function to create the process. The process is created in
a "stopped state"; its execution is stopped before the first executable instruction. The
analysis tool will later, after point probes are installed, start this process running by
calling the Process::bstart function.

start the multiple processes of a POE
application running

calls the PoeAppl::bcreate function to create the processes. The processes are
created in a "stopped state"; their execution is stopped before the first executable
instruction. The analysis tool will later, after point probes are installed, start these
processes running by calling the Application::bstart function.

 if(strcmp(argv[1],"d")==8){
 gethostname(hostname,BUFLEN);

printf(" 0Running on \"%s\"\n",hostname);
 } else
 strcpy(hostname,argv[1]);

if (strcmp("poe_pid",argv[2]) == 8) { //POE

AisStatus sts = A.binit_procs(hostname, atoi(argv[3]));
if (sts.status() != ASC_success){
printf("binit_procs() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("binit_procs() was successful.\n");
sts = A.bconnect();
if (sts.status() != ASC_success){
printf("bconnect() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("bconnect() was successful.\n");

 }
 get_Process();
 }

sts=A.battach(); //stop the application
if (sts.status() != ASC_success){

printf("battach() was not successful... %s\n",sts.status_name());
 exit(8);

} else {
printf("battach() was successful.\n");

 }

 Appendix A. A DPCL test coverage tool 199

} else if (strcmp("pid",argv[2]) == 8){ //Not POE
P = Process(hostname, atoi(argv[3]));
AisStatus sts = P.bconnect();
if (sts.status() != ASC_success){
printf("bconnect() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("bconnect() was successful.\n");

 }
sts=P.battach(); //stop the application
if (sts.status() != ASC_success){
printf("battach() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("battach() was successful.\n");

 }

} else if (strcmp("path",argv[2]) == 8){ //start a new appl
AisStatus sts = P.bcreate(hostname,argv[3],argvv,NULL,

 stdout_cb,NULL, stderr_cb,NULL);
if (sts.status() != ASC_success){
printf("bcreate() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("bcreate() was successful.\n");

 }

} else if (strcmp("poe_path",argv[2]) == 8){
 AisStatus sts=A.bcreate(hostname,argv[3],argvv,NULL,

stdout_cb, NULL, stderr_cb, NULL);
if (sts.status() != ASC_success){
printf("bcreate() was not successful... %s\n",sts.status_name());

 exit(8);
} else {
printf("bcreate() was successful.\n");

 }

If our analysis tool has connected to or created a POE application, note that, in the
preceding code, it calls the get_Process program function to prompt the user to
select a single process in the POE application to instrument. The program function
get_Process:

1. calls the Application::get_count function to determine the number of
processes in the POE application represented by the PoeAppl object A.

2. calls the Application::get_process function to get the Process object that
represents the process identified by the user. The Process object returned by
the Application::get_process function is assigned to the Process object
variable P.

void get_Process(void){
 char procname[256];
 int procno,proccnt;
proccnt = A.get_count() -1;
cout << "Enter the process number to probe (8 to "<<proccnt<<")"<<endl;

 cin>>procname;
 procno=atoi(procname);
cout<<"Using process "<<procno<<endl;

P = A.get_process(procno);
}

From this point on, the target application is mainly concerned with a single process
represented by the Process object P. The analysis tool prints the process ID and
the name of the host machine running the process to standard output. It gets this

200 IBM PE for AIX V3R1.0: DPCL Programming Guide

information by calling the Process::get_pid and Process::get_host_name
functions.

printf("Using Process %d",P.get_pid());

P.get_host_name(hostname,bufSize);
printf(" on host %s...\n",hostname);

Next, our analysis tool needs to get a reference to the source structure of the
selected target application process. This source object is represented as a
hierarchy of source objects (SourceObj class objects). The top level source object
(the root of the hierarchy) is called the "program object", and our analysis tool gets
a reference to it using the Program::get_program_object function. The SourceObj
object returned by the Process::get_program_object function is assigned to the
SourceObj object variable myprog. An additional SourceObj object (mymod) is
instantiated to represent an individual module in the source hierarchy.

SourceObj myprog = P.get_program_object();
SourceObj mymod;

Since our analysis tool is designed to show the test coverage for a particular
module only, it next prompts the user to select a module (source file). The user can
either enter a source file name, or type !Help and press <Enter> to list the source
files for the process. To list the source files, our analysis tool uses the
SourceObj::child_count function to determine the number of modules objects
under the program object. Using this number to initialize a for loop, the program
then assigns each module object in turn to the SourceObj object variable mymod, and
identifies the module's name using the SourceObj::module_name function. If the user
enters a module name, the analysis tool code uses a similar loop to assign the
appropriate module-level source object to the SourceObj object mymod, and then
expands the module using the SourceObj::bexpand function. The analysis tool must
expand the module because, when the DPCL system connects with a target
application process, it retrieves the source hierarchy only down to the module level.
Expanding the module with the SourceObj::expand or, in this case, the blocking
function SourceObj::bexpand enables our analysis tool to go deeper into the source
hierarchy.

 while(found==8)
 {

cout<<"Enter the source file name to check test coverage."<<endl;
cout<<"type !Help to list source files"<<endl;

 cin>>filename;

 if(strcmp(filename,"!Help")==8)
 {

// loop through source files to list
 cout<<"Source files:"<<endl;
 int count=myprog.child_count();
 for(int x=8;x<count;x++)
 {
 mymod=myprog.child(x);
 mymod.module_name(name,BUFLEN);
 cout<<x<<" "<<name<<endl;
 }
 } else
 {

for (int c = 8; c < myprog.child_count(); c++)
 {

mymod = myprog.child(c);
const char 0 modname = mymod.module_name(bufmname,bufSize);

if (strcmp(modname, filename) ==8)
 {

 Appendix A. A DPCL test coverage tool 201

printf("Module %s found... expanding\n",filename);
AisStatus sts = mymod.bexpand(P);
if (sts.status() != ASC_success)

 {
printf("bexpand() was not successful.. %s\n",sts.status_name());

 exit(8);
 }
 else
 {

printf("bexpand() was successful.\n");
 }
 found=1;
 break;
 }
 }
 //}

if (found == 8)
cout<<"\""<<filename<<"\" not found.\n";

 }

 } //end while

Now that is has a particular module to work with, our analysis tool can get to its
real work — instrumenting the target application to periodically show the frequency
of function calls in the module. Basically, our analysis tool will do this by installing a
point probe at the function entry point of each function in the module. Each time
execution enters a function the probe will execute, sending a message back to the
analysis tool. The probe's data callback will process these incoming messages,
keeping track of how many times each of the functions was called.

At 15-second intervals, a SIGALRM signal handler will take coverage information
collected by the probe's data callback routine and will print it to standard output.
The SIGALRM signal was, as you may recall, one of the signals that the analysis
tool added (using the Ais_add_signal function) to the list of signals managed by the
DPCL system. When the SIGALRM signal is received, the DPCL system will call
the handler specified by the analysis tool when it called the Ais_add_signal
function. The other signal that the analysis tool added to the list of those managed
by the DPCL system was the SIGINT signal. When the user presses <Control>-c,
the DPCL system will detect the signal and will call another signal handler in the
analysis tool. This one will print a final report of the information collected by the
probe's data callback routine.

That's basically how our analysis tool will instrument the target application; now let's
look at the specifics. First of all, the analysis tool needs to create the probe
expression that, when installed as a point probe at the various function entry points,
will send a message back to the analysis tool. To send data back to the analysis
tool, DPCL provides a predefined probe expression (Ais_send). Ais_send is a probe
expression representation of a function for sending data back to the analysis tool.
The function represented by the Ais_send probe expression takes three parameters
— a message handle for managing where the message is sent, the address of the
data to send, and the size of data being sent. In our case, the contents of the
message is not important since a tag value passed to the data callback will track
which function was called. Since the content of the message is not important, our
probe will send the string "xxx". If we were able to hand code this function call into
our target application, it would look like this:

Ais_send(Ais_msg_handle, "xxx", 4);

Using the ProbeExp class in DPCL, however, we have to use a slightly different
approach to accomplish the same thing. That is because Ais_send is a probe

202 IBM PE for AIX V3R1.0: DPCL Programming Guide

expression representation of the actual function, and each parameter to the function
also needs to be a probe expression. Then, all these individual probe expressions
need to be combined into a single probe expression that represents the function
call with parameters.

First our analysis tool needs to create an array of probe expressions, each
representing one of the parameters to the Ais_send function. Note in the following
code that Ais_msg_handle is another predefined probe expression supplied by
DPCL. It is specifically designed for the Ais_send function for managing where the
message is sent.

ProbeExp parms[3];
parms[8]=Ais_msg_handle;
parms[1]=ProbeExp("xxx"); //send dummy information to application
parms[2]=ProbeExp(4);

Next the analysis tool can create the probe expression that calls the Ais_send
function using the three parameters defined in the parms array.

ProbeExp mysend=Ais_send.call(3,parms);

Now that the analysis tool has created the probe expression, it can install it as point
probes at the function entry point for each function within the selected module. To
do this, our analysis tool uses a series of nested loops as shown below. First it
dives one level deeper into the module's source hierarchy to identify the
function-level SourceObj objects within the module-level SourceObj object mymod. It
does this by initializing the first for loop to the number of child SourceObj objects in
the SourceObj object mymod. To get the number of child SourceObj objects in mymod,
the analysis tool calls the SourceObj::child_count function. For each child
SourceObj object in mymod, the analysis tool then uses the
Source::get_demangled_name function to determine if the SourceObj object
represents a function in the source hierarchy. If the SourceObj object does not
represent a function, the SourceObj::get_demangled_name function will return 0, and
the for loop will ignore this child SourceObj object and continue with its next
iteration. If the SourceObj object does represent a function, it uses a for loop to
identify the instrumentation point representing the function entry point. The analysis
tool uses the SourceObj::exclusive_point_count function to identify the number of
instrumentation points in the function-level SourceObj object. It then uses the
SourceObj::exclusive_point function to get a reference to a particular
instrumentation point for the current iteration of the loop and uses the
InstPoint::get_type reference to determine if the instrumentation point represents
the function entry site. (The IPT_function_entry enumeration constant of the
InstPtType enumeration type indicates that the point is the function entry site.)
When the analysis tool identifies a function entry site, it installs and activates its
probe expression as a point probe at that instrumentation point using the
Process::install_probe and Process::activate_probe functions.

 SourceObj myfun;
char bufdname[bufSize]; // buffer for get_demangled_name(..)

#ifdef DEBUG
printf("mymod.child_count() = %d\n",mymod.child_count());

#endif

 fun_count=mymod.child_count();
fun_arr = new fun_info[fun_count];

 printf("\n");
for (int c = 8; c < fun_count; c++)

 {
myfun = mymod.child(c);

 Appendix A. A DPCL test coverage tool 203

const char 0 funname = myfun.get_demangled_name(bufdname,bufSize);
if (funname == NULL) continue;
printf("function \"%s\" found\n",funname);

 strcpy(fun_arr[fun_num].funname,funname);
 fun_arr[fun_num].pcount=8;
 fun_num++;

 InstPoint mypoint;

for (int d = 8; d < myfun.exclusive_point_count(); d++)
 {

mypoint = myfun.exclusive_point(d);

if (mypoint.get_type() == IPT_function_entry)
 {

#ifdef DEBUG
printf(" Found function entry point.\n");

#endif

 ProbeHandle myph;
GCBFuncType mydcb = data_cb;
GCBTagType mytg = (GCBTagType) (fun_num-1);

AisStatus sts = P.binstall_probe(1, &mysend, &mypoint,
 &mydcb, &mytg,
 &myph);

if (sts.status() != ASC_success){
printf(" binstall_probe() was not successful.. "

 "%s\n",sts.status_name());
 exit(8);

} else {
 ++num_installed;

#ifdef DEBUG
printf(" binstall_probe() was successful\n");

#endif

 }

sts = P.bactivate_probe(1, &myph);
if (sts.status() != ASC_success){
printf(" bactivate_probe() was not successful.. %s\n",sts.status_name());

 exit(8);
} else {

#ifdef DEBUG
printf(" bactivate_probe() was successful\n");

#endif

 }

 break;
 }
 }
 }

In the preceding example, consider for a moment the fact that this probe
expression is potentially going to be installed and activated at multiple function
entry points within this same process. When execution reaches the activated probe,
it will send its message back to the analysis tool where its data callback routine is
triggered. Here the same data callback routine will be triggered for all the installed
point probes. The data callback needs some way of knowing which function entry
point has been reached. To identify the function that triggers the data callback, our
analysis tool code uses the data callback's tag and the program variable fun_num.
The data callback can then use this tag value to identify the function that was

204 IBM PE for AIX V3R1.0: DPCL Programming Guide

called. Here's the data callback code; it uses the array fun_arr to keep track of the
number of times each function was called.

void
data_cb(GCBSysType sys, GCBTagType tag, GCBObjType obj, GCBMsgType msg)
{

Process 0p = (Process 0)obj;

int i = (int) tag;
#ifdef DEBUG

printf("Task %d sent the function number %d\n", p->get_task(),i);
#endif
 fun_arr[i].pcount++;

}

Getting back to the main routine, we see that the analysis tool has a few final
actions to make before entering the DPCL main loop (using the Ais_main_loop
function) to process events asynchronously. It instructs the end user to press
<Control>-c to exit, and, if it created one or more processes (using the
Process::create or PoeAppl::create function), it now starts them (using the
Process::start or Application::start function). It also schedules a SIGALRM
signal to be delivered to the analysis tool process after 15 seconds.

printf("\n0Display interval set at every %d seconds0\n",INTERVAL);
printf("0Enter <CTRL>-c to exit0\n");

 sleep(3);

 if(strcmp(argv[2],"path")==8){
 AisStatus sts=P.bstart();
 if (sts.status()==ASC_success){

printf("bstart() was successful\n");
} else {
printf("bstart() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 }

 if (strcmp(argv[2],"poe_path")==8)
 {
 AisStatus sts=A.bstart();
 if (sts.status()==ASC_success){

printf("bstart() was successful\n");
} else {
printf("bstart() FAILED.. %s\n",sts.status_name());

 exit(8);
 }

} else if(strcmp(argv[2],"poe_pid")==8){
 AisStatus sts=A.bresume();
 if (sts.status()==ASC_success){

printf("bresume() was successful\n");
} else {
printf("bresume() FAILED.. %s\n",sts.status_name());

 exit(8);
 }

} else if(strcmp(argv[2],"pid")==8){
 AisStatus sts=P.bresume();
 if (sts.status()==ASC_success){

printf("bresume() was successful\n");
} else {
printf("bresume() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 }

 alarm(INTERVAL);
 lflag=1;
 Ais_main_loop();

 Appendix A. A DPCL test coverage tool 205

Once in the Ais_main_loop, the analysis tool process will respond to events
asynchronously. As the target process runs and the installed probes execute, they
will send data back to the analysis tool to trigger the data callback. Each message
will indicate that a function was called, and, as already shown, the callback will use
its tag value and an array to keep track of this information. After 15 seconds, the
SIGALRM signal is delivered to the analysis tool process; it is detected by the
DPCL system which calls the following signal handler (sighandler_ALRM) as
specified by the analysis tool when it earlier called the Ais_add_signal function.
The signal handler calls the program functions ck_process and print_fun_info.
The program function ck_process checks to see if the target application process is
still running. The program function print_fun_info prints the coverage information
collected by the data callback, and schedules another SIGALRM signal to be
delivered to the analysis tool process after another 15 seconds. Here's the signal
handler followed by the functions that it calls.

int sighandler_ALRM(int signal){
 ck_process();

 print_fun_info();
 sleep(5);
 alarm(15);
 return(8);
}

void ck_process(void){
//check to see if the process was destroyed

ConnectState 0state=new ConnectState;
AisStatus sts = P.query_state(state);
if (sts.status() == ASC_success){
if (0state == PRC_destroyed){

 cout<<"Process terminated. Exiting...\n";
 write_results();
 exit(8);
 }
 }

}

void print_fun_info(void)
{
 int num_tested=8;
if (fun_count == 8){

printf(" No function found!!\n");
} else {

printf("\n00 Number of times each function was executed:\n");
for (int i=8; i< num_installed; i++){

 printf("00 %s\t\t%d\n",fun_arr[i].funname,fun_arr[i].pcount);
if (fun_arr[i].pcount >8) num_tested++;

 }
printf("\n00 Test coverage = %d %%\n",(num_tested0188)/num_installed);

 fflush(stdout);
 }
}

The preceding signal handler and function will be called at 15 second intervals in
order to print the coverage information collected by the data callback to standard
output. If the end user presses <Control>-c, the DPCL system detects the SIGINT
signal which, like the SIGALRM signal, has been added to the list of signals it
monitors. In the case of the SIGINT signal, the DPCL system calls the analysis
tool's signal handler sighandler. This signal handler breaks the analysis tool out of
the DPCL main event loop (using the Ais_end_main_loop function), and writes the
final coverage information to a file by calling the program function write_results.

206 IBM PE for AIX V3R1.0: DPCL Programming Guide

int sighandler(int s){
if (lflag == 1){

 Ais_end_main_loop();
 write_results();
} else {
printf("0\"<CTRL>-c\" was entered. Exiting..\n");

 exit(8);
 }
 return(8);
}

void write_results(void){
 FILE 0fileout=fopen(FILEOUT,"w");
 int num_tested=8;

fprintf(fileout,"Source file \"%s\":\n",filename);
if (fun_count == 8){
fprintf(fileout," No function found!!\n");

} else {
fprintf(fileout,"\nNumber of times each function was executed:\n");
for (int i=8; i< num_installed; i++){

 fprintf(fileout," %s\t\t%d\n",fun_arr[i].funname,fun_arr[i].pcount);
if (fun_arr[i].pcount >8) num_tested++;

 }
fprintf(fileout," Test coverage = %d %%\n",(num_tested0188)/num_installed);

 }
 fclose(fileout);

printf("0Please check \"%s\" for the final result.\n",FILEOUT);
}

Since the preceding signal handler breaks the analysis tool out of the DPCL main
loop, execution of the main routine can now continue past its call to the
Ais_main_loop function. The analysis tool will then, since the end user has finished
collecting the coverage information, attach to and kill any processes that it created
and started. Processes that it merely connected to are allowed to continue running.
To kill the single process or multiple processes of the POE application that it
started, the analysis tool uses either the Process::battach and Process::bdestroy
functions or the Application::battach and Application::bdestroy functions.

 if(strcmp(argv[2],"path")==8){
 AisStatus sts=P.battach();
 if (sts.status()==ASC_success){

printf("battach() was successful\n");
} else {
printf("battach() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 sts=P.bdestroy();
 if (sts.status()==ASC_success){

printf("bdestroy() was successful\n");
} else {
printf("bdestroy() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 }

 if (strcmp(argv[2],"poe_path")==8)
 {
 AisStatus sts=A.battach();
 if (sts.status()==ASC_success){

printf("battach() was successful\n");
} else {
printf("battach() FAILED.. %s\n",sts.status_name());

 exit(8);
 }
 sts=A.bdestroy();
 if (sts.status()==ASC_success){

printf("bdestroy() was successful\n");
} else {
printf("bdestroy() FAILED.. %s\n",sts.status_name());

 Appendix A. A DPCL test coverage tool 207

 exit(8);
 }
 }

}

208 IBM PE for AIX V3R1.0: DPCL Programming Guide

 Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

 Copyright IBM Corp. 2000 209

IBM Corporation
Department LJEB/P905
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample programs
are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs
conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a
copyright notice as follows:

 (your company name) (year). Portions of this code are derived from IBM Corp. Sample
Programs.  Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

 Trademarks
The following terms are trademarks of the International Business Machines Corporation in
the United States or other countries or both:

 AIX
 ESCON
 IBM
 IBMLink
 LoadLeveler
 Micro Channel
 RS/6000
 RS/6000 SP

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, BackOffice, MS-DOS , and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

210 IBM PE for AIX V3R1.0: DPCL Programming Guide

Pentium and Pentium II Xeon are trademarks or registered trademarks of Intel Corporation in
the United States, other countries, or both.

Tivoli Enterprise Console is a trademark of Tivoli Systems Inc. in the United States, other
countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service marks of
others.

 Notices 211

212 IBM PE for AIX V3R1.0: DPCL Programming Guide

 Glossary

A
abstract syntax tree. A data structure that represents
logic removed from a particular syntactic representation
of that logic. For example, the abstract syntax tree for
the expression a + (b x c) is identical to the abstract
syntax tree for the expression a + b x c (where only
precedence rules force the multiplication operation to be
performed first). Compilers create abstract syntax trees
from a program's source code as an intermediary stage
before manipulating and converting the data structure
into executable instructions. Similarly, in DPCL, probe
expressions to be executed within target application
processes are first converted into abstract syntax trees.
See also Dynamic Probe Class Library (DPCL) and
probe expression.

address. A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high-function graphics and
floating-point computations.

AIXwindows Environment/6000. A graphical user
interface (GUI) for the IBM RS/6000. It has the following
components:

� A graphical user interface and toolkit based on
OSF/Motif

� Enhanced X-Windows, an enhanced version of the
MIT X Window System

� Graphics Library (GL), a graphical interface library
for the application programmer that is compatible
with Silicon Graphics' GL interface.

analysis tool. See DPCL analysis tool.

API. Application programming interface.

application. The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

application programming interface (API). A software
interface that enables applications or program
components to communicate with each other. An API is
the set of programming language constructs or
statements that can be coded in an application program
to obtain the specific functions and services provided by
an underlying operating system or service program.

argument. A parameter passed between a calling
program and a called program or subprogram.

attribute. A named property of an entity.

B
bandwidth. The difference, expressed in hertz,
between the highest and the lowest frequencies of a
range of frequencies. For example, analog transmission
by recognizable voice telephone requires a bandwidth
of about 3000 hertz (3 kHz). The bandwidth of an
optical link designates the information-carrying capacity
of the link and is related to the maximum bit rate that a
fiber link can support.

blocking operation. An operation that does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint. A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or to
a specified program.

broadcast operation. A communication operation in
which one processor sends (or broadcasts) a message
to all other processors.

buffer. A portion of storage used to hold input or
output data temporarily.

C
C. A general-purpose programming language. It was
formalized by Uniforum in 1983 and the ANSI standards
committee for the C language in 1984.

C++. A general-purpose programming language that is
based on the C language. C++ includes extensions
that support an object-oriented programming paradigm.
Extensions include:

 � strong typing
� data abstraction and encapsulation
� polymorphism through function overloading and

templates
 � class inheritance.

call arc. The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The

 Copyright IBM Corp. 2000 213

function making the call is known as the caller, while
the function receiving the call is known as the callee.

chaotic relaxation. An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions that can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client. A function that requests services from a server
and makes them available to the user.

cluster. A group of processors interconnected through
a high-speed network that can be used for
high-performance computing. A cluster typically
provides excellent price/performance.

collective operation. An operation in which every task
in the communicator, file, or window must participate.

command alias. When using the PE command line
debugger pdbx, you can create abbreviations for
existing commands using the pdbx alias command.
These abbreviations are known as command aliases.

Communication Subsystem (CSS). A component of
the Parallel System Support Programs that provides
software support for the SP Switch. CSS provides two
protocols: Internet Protocol (IP) for LAN-based
communication and user space (US) as a
message-passing interface that is optimized for
performance over the switch. See also Internet Protocol
and User Space.

communicator. An MPI object that describes the
communication context and an associated group of
processes.

compile. To translate a source program into an
executable program.

condition. One of a set of specified values that a data
item can assume.

control workstation. A workstation attached to the
IBM RS/6000 SP SP that serves as a single point of
control allowing the administrator or operator to monitor
and manage the system using Parallel System Support
Programs.

core dump. A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault or a severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file. A file that preserves the state of a program,
usually just before a program is terminated for an
unexpected error. See also core dump.

current context. When using either of the PE parallel
debuggers, control of the parallel program and the
display of its data can be limited to a subset of the
tasks belonging to that program. This subset of tasks is
called the current context. You can set the current
context to be a single task, multiple tasks, or all the
tasks in the program.

D
data decomposition. A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism. Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx. A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in
which you can manually control the execution of a
program. It also provides the ability to display the
program' data and operation.

distributed shell (dsh). An Parallel System Support
Programs command that lets you issue commands to a
group of hosts in parallel. See IBM Parallel System
Support Programs for AIX: Command and Technical
Reference for details.

domain name. The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

DPCL. See Dynamic Probe Class Library (DPCL).

DPCL analysis tool. A C++ application built on the
Dynamic Probe Class Library (DPCL). It links in the
DPCL library and uses the DPCL API calls to
instrument (create probes and insert them into) one or
more target application processes. Typically, an
analysis tool is designed to measure the efficiency,
confirm the correctness, or monitor the execution of, the
target application. An analysis tool could be a complex
and general-purpose tool like a debugger, or it might be
a simple and specialized tool designed for only one
particular program, user, or situation. See also DPCL
target application, Dynamic Probe Class Library
(DPCL), and probe.

214 IBM PE for AIX V3R1.0: DPCL Programming Guide

DPCL target application. The executable program
that is instrumented by a DPCL analysis tool. It is the
process (or processes) into which the DPCL analysis
tool inserts probes. A target application could be a
serial or parallel program. Furthermore, if the target
application is a parallel program, it could follow either
the SPMD or the MPMD model, and may be designed
for either a message-passing or a shared-memory
system. See also DPCL analysis tool, Dynamic Probe
Class Library (DPCL), and probe.

dynamic instrumentation. A form of software
instrumentation in which instrumentation can be added
to or removed from an application while it is running.
Unlike traditional forms of software instrumentation,
where instrumentation is added to the application prior
to execution, dynamic instrumentation is well suited to

� examining programs, such as database servers,
that do not normally terminate.

� examining long-running numerical programs.

� visualizing complex or long-running programs with a
minimum of secondary storage consumption.

� enabling the user to interactively tailor, during the
application's run, the type of data collected.

The Dynamic Probe Class Library (DPCL) is based on
dynamic instrumentation technology. See also Dynamic
Probe Class Library (DPCL) and software
instrumentation.

Dynamic Probe Class Library (DPCL). A C++ class
library whose application programming interface (API)
enables a program to dynamically insert instrumentation
code patches, or probes, into an executing program.
The DPCL product is an asynchronous software system
designed to serve as a foundation for a variety of
analysis tools that need to dynamically instrument
(insert probes into and remove probes from) target
applications. In addition to its API, the DPCL system
consists of:

� daemon processes that attach themselves to the
target application process(es) to perform most of
the actual work requested by the analysis tool via
the API calls.

� an asynchronous callback facility for responding to
messages from the daemon processes (including
data messages forwarded from the installed
probes).

See also DPCL analysis tool, DPCL target application,
and probe.

E
environment variable. 1) A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2) A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

Ethernet. A baseband local area network (LAN) that
allows multiple stations to access the transmission
medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by using collision detection and
delayed retransmission. Ethernet uses carrier sense
multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the
completion of an asynchronous operation such as an
input/output operation, for example.

executable. A program that has been link-edited and
therefore can be run in a processor.

execution. To perform the actions specified by a
program or a portion of a program.

expression. In programming languages, a language
construct for computing a value from one or more
operands.

F
fairness. A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, no
set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). An American
National Standards Institute (ANSI) standard for a local
area network (LAN) using optical fiber cables. An FDDI
LAN can be up to 100 kilometers (62 miles) and can
include up to 500 system units. There can be up to 2
kilometers (1.24 miles) between system units and
concentrators.

file system. In the AIX operating system, the
collection of files and file management structures on a
physical or logical mass storage device, such as a
diskette or minidisk.

fileset. 1) An individually-installable option or update.
Options provide specific functions. Updates correct an
error in, or enhance, a previously installed program. 2)

 Glossary 215

One or more separately-installable, logically-grouped
units in an installation package. See also licensed
program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern
programming languages, and the most popular
language for scientific and engineering computations. Its
name is a contraction of FORmula TRANslation. The
two most common FORTRAN versions are FORTRAN
77, originally standardized in 1978, and FORTRAN 90.
FORTRAN 77 is a proper subset of FORTRAN 90.

function call tree. A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle. A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition. A method of dividing the
work in a program to exploit parallelism. One divides
the program into independent pieces of functionality,
which are distributed to independent processors. This
method is in contrast to data decomposition, which
distributes the same work over different data to
independent processors.

functional parallelism. Refers to situations where
parallel tasks specialize in particular work.

G
Gauss-Seidel. An iterative relaxation method for
solving Laplace's equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are
obtained by averaging the values of nearby points.
Gauss-Seidel differs from Jacobi-Seidel in that, for the
i+1st iteration, Jacobi-Seidel uses only values calculated
in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max. The maximum value across all
processors for a given variable. It is global in the sense
that it is global to the available processors.

global variable. A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof. A UNIX command that produces an execution
profile of C, COBOL, FORTRAN, or Pascal programs.
The execution profile is in a textual and tabular format.
It is useful for identifying which routines use the most
CPU time. See the man page on gprof.

graphical user interface (GUI). A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
which represent actual objects, that the user can access
and manipulate with a pointing device.

GUI. Graphical user interface.

H
SP Switch. The high-performance message-passing
network of the IBM RS/6000 SP(SP) machine that
connects all processor nodes.

HIPPI. High performance parallel interface.

hook. A pdbx command that lets you re-establish
control over all tasks in the current context that were
previously unhooked with this command.

home node. The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host. A computer connected to a network that
provides an access method to that network. A host
provides end-user services.

host list file. A file that contains a list of host names,
and possibly other information, that was defined by the
application which reads it.

host name. The name used to uniquely identify any
computer on a network.

hot spot. A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

I
IBM Parallel Environment (PE) for AIX. A licensed
program that provides an execution and development
environment for parallel C, C++, and FORTRAN
programs. It also includes tools for debugging, profiling,
and tuning parallel programs.

installation image. A file or collection of files that are
required in order to install a software product on a IBM

216 IBM PE for AIX V3R1.0: DPCL Programming Guide

RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AIX installp command. See also
fileset, licensed program, and package.

instrumentation point. In DPCL, a location within a
target application process where an analysis tool can
install point probes. Instrumentation points are locations
at which the DPCL system determines it is safe to insert
new code. Such locations are function entry, function
exit, and function call sites. See also DPCL analysis
tool, DPCL target application, and Dynamic Probe Class
Library (DPCL).

Internet. The collection of worldwide networks and
gateways that function as a single, cooperative virtual
network.

Internet Protocol (IP). 1) The TCP/IP protocol that
provides packet delivery between the hardware and
user processes. 2) The SP Switch library, provided with
the Parallel System Support Programs, that follows the
IP protocol of TCP/IP.

IP. Internet Protocol.

J
Jacobi-Seidel. See Gauss-Seidel.

K
Kerberos. A publicly available security and
authentication product that works with the Parallel
System Support Programs software to authenticate the
execution of remote commands.

kernel. The core portion of the UNIX operating system
that controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode), and is
protected from user tampering by the hardware.

L
Laplace's equation. A homogeneous partial
differential equation used to describe heat transfer,
electric fields, and many other applications.

The dimension-free version of Laplace's equation is:

The two-dimensional version of Laplace's equation may
be written as:

latency. The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

licensed program. A collection of software packages
sold as a product that customers pay for to license. A
licensed program can consist of packages and filesets a
customer would install. These packages and filesets
bear a copyright and are offered under the terms and
conditions of a licensing agreement. See also fileset
and package.

lightweight corefiles. An alternative to standard AIX
corefiles. Corefiles produced in the Standardized
Lightweight Corefile Format provide simple process
stack traces (listings of function calls that led to the
error) and consume fewer system resources than
traditional corefiles.

LoadLeveler. A job management system that works
with POE to let users run jobs and match processing
needs with system resources, in order to make better
use of the system.

local variable. A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling. A program transformation that makes
multiple copies of the body of a loop, also placing the
copies within the body of the loop. The loop trip count
and index are adjusted appropriately so the new loop
computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

M
menu. A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

message catalog. A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

 Glossary 217

message passing. Refers to the process by which
parallel tasks explicitly exchange program data.

Message Passing Interface (MPI). A standardized
API for implementing the message-passing model.

MIMD. Multiple instruction stream, multiple data
stream.

Multiple instruction stream, multiple data stream
(MIMD). A parallel programming model in which
different processors perform different instructions on
different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. Message Passing Interface.

N
network. An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

Network Information Services. A set of UNIX
network services (for example, a distributed service for
retrieving information about the users, groups, network
addresses, and gateways in a network) that resolve
naming and addressing differences among computers in
a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the IBM RS/6000 SP, a single location or workstation in
a network. An SP node is a physical entity (a
processor).

node ID. A string of unique characters that identifies
the node on a network.

nonblocking operation. An operation, such as
sending or receiving a message, that returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O
object code. The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory. Contrast with source code.

one-shot probe. In DPCL, a probe that is executed by
the DPCL system immediately upon request, regardless
of what the application happens to be doing. See also
Dynamic Probe Class Library (DPCL), phase probe,
point probe, and probe.

optimization. A widely-used (though not strictly
accurate) term for program performance improvement,
especially for performance improvement done by a
compiler or other program translation software. An
optimizing compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag. Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P
package. A number of filesets that have been
collected into a single installable image of licensed
programs. Multiple filesets can be bundled together for
installing groups of software together. See also fileset
and licensed program.

parallelism. The degree to which parts of a program
may be concurrently executed.

parallelize. To convert a serial program for parallel
execution.

Parallel Operating Environment (POE). An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter. (1) In FORTRAN, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.

218 IBM PE for AIX V3R1.0: DPCL Programming Guide

(4) A particular piece of information that a system or
application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) In
terms of the IBM RS/6000 SP, a logical definition of
nodes to be viewed as one system or domain. System
partitioning is a method of organizing the SP into
groups of nodes for testing or running different levels of
software of product environments.

partition manager. The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard
error (STDERR).

pdbx. The parallel, symbolic command-line debugging
facility of PE. pdbx is based on the dbx debugger and
has a similar interface.

PE. The IBM Parallel Environment for AIX licensed
program.

performance monitor. A utility that displays how
effectively a system is being used by programs.

phase probe. In DPCL, a probe that is executed
periodically, upon expiration of a timer, regardless of
what part of the target application's code is executing.
As opposed to one-shot probes and point probes, a
phase probe must refer to a probe module function. A
phase probe cannot be a simple probe expression that
does not refer to a probe module function. The control
mechanism for invoking these time-initiated phase
probes is called a phase. See also Dynamic Probe
Class Library (DPCL), one-shot probe, point probe, and
probe.

PID. Process identifier.

POE. Parallel Operating Environment.

point probe. In DPCL, a probe that the analysis tool
places at particular locations within one or more target
application processes. When placed in an activated
state by the analysis tool, a point probe will run as part
of a target application process whenever execution
reaches its installed location in the code. The fact that
point probes are associated with particular locations
within the target application code makes them markedly
different from the other two types of probes (phase
probes and one-shot probes), which are executed at a
particular time regardless of what code the target
application is executing. See also Dynamic Probe Class
Library (DPCL), one-shot probe, phase probe, and
probe.

pool. Groups of nodes on an SP that are known to
LoadLeveler, and are identified by a pool name or
number.

point-to-point communication. A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

probe. In DPCL, the software instrumentation code
patch that a DPCL analysis tool can insert into one or
more processes of the DPCL target application. Probes
are created by the analysis tool code (using a
combination of probe expressions and probe modules),
and therefore are able to perform any work required by
the tool. For example, depending on the needs of the
analysis tool, probes could be inserted into the target
application to collect and report performance information
(such as execution time), keep track of pass counts for
test coverage tools, or report or modify the contents of
variables for debuggers. There are three types of
probes: one-shot probes, phase probes, and point
probes. These three types of probes are differentiated
by the manner in which their execution is triggered. See
also DPCL analysis tool, DPCL target application,
Dynamic Probe Class Library (DPCL), one-shot probe,
phase probe, point probe, probe expression, and probe
module.

probe expression. In DPCL, an abstract syntax tree
that represents a simple instruction or sequence of
instructions to be executed as a probe within one or
more target application processes. See also abstract
syntax tree, Dynamic Probe Class Library (DPCL),
probe, and probe module.

probe module. In DPCL, a compiled object file
containing one or more functions written in C. Once an
analysis tool loads a particular probe module into a
target application, a probe is able to call any of the
functions contained in the module. See also Dynamic
Probe Class Library (DPCL) and probe.

procedure. (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements that cause one or more
programs to be performed.

process. A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process's state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork() system call and
ends using an exit() system call. Between fork and
exit, the process is known to the system by a unique
process identifier (PID).

 Glossary 219

Each process has its own virtual memory space and
cannot access another process's memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

prof. A utility that produces an execution profile of an
application or program. It is useful to identifying which
routines use the most CPU time. See the man page for
prof.

profiling. The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array. An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program's execution.

pthread. A thread that conforms to the POSIX
Threads Programming Model.

R
reduced instruction-set computer. A computer that
uses a small, simplified set of frequently-used
instructions for rapid execution.

reduction operation. An operation, usually
mathematical, that reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host. Any host on a network except the one at
which a particular operator is working.

remote shell (rsh). A command supplied with both
AIX and the Parallel System Support Programs that lets
you issue commands on a remote host.

Report. In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. Xprofiler generates five types of reports.
Each type of report presents different statistical
information for an application.

RISC. See reduced instruction-set computer.

S
shell script. A sequence of commands that are to be
executed by a shell interpreter such as the Bourne shell
(sh), the C shell (csh), or the Korn shell (ksh). Script
commands are stored in a file in the same form as if
they were typed at a terminal.

segmentation fault. A system-detected error, usually
caused by referencing an non-valid memory address.

server. A functional unit that provides shared services
to workstations over a network — a file server, a print
server, or a mail server, for example.

signal handling. A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

Single program, multiple data (SPMD). A parallel
programming model in which different processors
execute the same program on different sets of data.

software instrumentation. Code that is inserted into a
program to gather information regarding the program's
run. As the instrumented application executes, the
instrumented code then generates the desired
information, which could include performance, trace,
test coverage, diagnostic, or other data. See also
dynamic instrumentation.

source code. The input to a compiler or assembler,
written in a source language. Contrast with object
code.

source line. A line of source code.

source object. In DPCL, an object that provides a
coarse, source-code-level view of a target application
process, and enables an analysis tool to display or
navigate a hierarchical representation of a particular
target application process. See also DPCL target
application and Dynamic Probe Class Library (DPCL).

SP. IBM RS/6000 SP; a scalable system arranged in
various physical configurations, that provides a
high-powered computing environment.

SPMD. Single program, multiple data.

standard error. In the AIX operating system, the
secondary destination of data produced by a command.
Standard error goes to the display unless redirection or
piping is used, in which case standard error can go to a
file or to another command.

standard input. In the AIX operating system, the
primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command.

standard output. In the AIX operating system, the
primary destination of data produced by a command.
Standard output goes to the display unless redirection
or piping is used, in which case standard output can go
to a file or to another command.

220 IBM PE for AIX V3R1.0: DPCL Programming Guide

STDERR. Standard error.

STDIN. Standard input.

STDOUT. Standard output.

stencil. A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in
a computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

synchronization. The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

System Data Repository. A component of the Parallel
System Support Programs software that provides
configuration management for the SP system. It
manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

T
target application. See DPCL target application.

task. A unit of computation analogous to an AIX
process.

thread. A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing. In PE, the collection of information about the
execution of the program. This information is
accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record. In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your

program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
that can later be examined.

U
unrolling loops. See loop unrolling.

US. User space.

user. (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US). A version of the message passing
library that is optimized for direct access to the SP
Switch, that maximizes the performance capabilities of
the SP hardware.

utility program. A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the
processes of a computer; for example, an input routine.

V
variable. (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose
value can be changed, while the program is running, by
referring to the name of the variable.

view. (1) To display and look at data on screen.

(2) A special display of data, created as needed. A view
temporarily ties two or more files together so that the
combined files can be displayed, printed, or queried.
The user specifies the fields to be included. The original
files are not permanently linked or altered; however, if
the system allows editing, the data in the original files
will be changed.

X
X Window System. The UNIX industry's graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

xpdbx. The former name of the PE graphical interface
debugging facility, which is now called pedb.

 Glossary 221

Xprofiler. An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick

access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

222 IBM PE for AIX V3R1.0: DPCL Programming Guide

 Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP hardware
and software products.

You can find most of the IBM product information for RS/6000 SP products on the World
Wide Web. Formats for both viewing and downloading are available.

PE documentation is shipped with the PE licensed program in a variety of formats and can
be installed on your system. See “Accessing PE Documentation Online” and “Parallel
Environment (PE) Publications” on page 224 for more information.

This bibliography also contains a list of non-IBM publications that discuss parallel computing
and other topics related to the RS/6000 SP.

 Information Formats
Documentation supporting RS/6000 SP software licensed programs is no longer available
from IBM in hardcopy format. However, you can view, search, and print documentation in the
following ways:

� On the World Wide Web

� Online (on the product media and via the SP Resource Center)

Finding Documentation on the World Wide Web
Most of the RS/6000 SP hardware and software books are available from the IBM RS/6000
Web site at:

http://www.rs6000.ibm.com

The serial and parallel programs that you find in the IBM Parallel Environment for AIX:
Hitchhiker's Guide are also available from the IBM RS/6000 Web site, in the same location
as the PE online library.

You can view a book, download a Portable Document Format (PDF) version of it, or
download the sample programs from the IBM Parallel Environment for AIX: Hitchhiker's
Guide.

At the time this manual was published, the Web address of the “RS/6000 SP Product
Documentation Library” page was:

http://www.rs6000.ibm.com/resource/aix_resource/sp_books

However, the structure of the RS/6000 Web site may change over time.

Accessing PE Documentation Online
On the same medium as the PE product code, IBM ships PE man pages, HTML files, and
PDF files. To use the PE online documentation, you must first install these filesets:

 � ppe.html
 � ppe.man
 � ppe.pdf

To view the PE HTML publications, you need access to an HTML document browser such
as Netscape. The HTML files and an index that links to them are installed in the

 Copyright IBM Corp. 2000 223

/usr/lpp/ppe.html directory. Once the HTML files are installed, you can also view them from
the RS/6000 SP Resource Center.

If you have installed the SP Resource Center on your SP system, you can access it by
entering this command:

/usr/lpp/ssp/bin/resource_center

If you have the SP Resource Center on CD-ROM, see the readme.txt file for information
about how to run it.

To view the PE PDF publications, you need access to the Adobe Acrobat Reader 3.0 or
later. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely
available for downloading from the Adobe web site at:

http://www.adobe.com

To successfully print a large PDF file (approximately 300 or more pages) from the Adobe
Acrobat reader, you may need to select the “Download Fonts Once” button on the Print
window.

RS/6000 SP Publications

SP Hardware and Planning Publications
The following publications are related to this book only if you run parallel programs on the
IBM RS/6000 SP. These books are not related if you use an IBM RS/6000 network cluster.

� IBM RS/6000 SP: Planning, Volume 1, Hardware and Physical Environment, GA22-7280

� IBM RS/6000 SP: Planning, Volume 2, Control Workstation and Software Environment,
GA22-7281

SP Software Publications

 LoadLeveler Publications
� LoadLeveler Diagnosis and Messages Guide, GA22-7277

� Using and Administering LoadLeveler, SA22-7311

Parallel Environment (PE) Publications
� IBM Parallel Environment for AIX: DPCL Class Reference, SA22-7421

� IBM Parallel Environment for AIX: DPCL Programming Guide, SA22-7420

� IBM Parallel Environment for AIX: Hitchhiker's Guide, SA22-7424

� IBM Parallel Environment for AIX: Installation, GA22-7418

� IBM Parallel Environment for AIX: Messages, GA22-7419

� IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7422

� IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7423

� IBM Parallel Environment for AIX: MPL Programming and Subroutine Reference,
GC23-3893

� IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7425

� IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7426

224 IBM PE for AIX V3R1.0: DPCL Programming Guide

 PSSP Publications
The following publications are related to this book only if you run parallel programs on the
IBM RS/6000 SP. These books are not related if you use an IBM RS/6000 network cluster.

� IBM Parallel System Support Programs for AIX: Administration Guide, SA22-7348

� IBM Parallel System Support Programs for AIX: Command and Technical Reference,
GA22-7351

� IBM Parallel System Support Programs for AIX: Diagnosis Guide, GA22-7350

� IBM Parallel System Support Programs for AIX: Installation and Migration Guide,
GA22-7347

� IBM Parallel System Support Programs for AIX: Messages Reference, GA22-7352

AIX and Related Product Publications
For the latest information on AIX and related products, including RS/6000 hardware
products, see AIX and Related Products Documentation Overview, SC23-2456. You can
order a printed copy of the book from IBM. You can also view it online from the “AIX Online
Publications and Books” page of the RS/6000 Web site at:

http://www.rs6000.ibm.com/resource/aix_resource/Pubs

 DCE Publications
You can view a DCE book or download a PDF version of it from the IBM DCE Web site at:

http://www.ibm.com/software/network/dce/library

 Red Books
IBM's International Technical Support Organization (ITSO) has published a number of
redbooks related to the RS/6000 SP. For a current list, see the ITSO Web site at:

http://www.redbooks.ibm.com

 Non-IBM Publications
Here are some non-IBM publications that you may find helpful.

� Almasi, G. and A. Gottlieb. Highly Parallel Computing, Benjamin-Cummings Publishing
Company, Inc., 1989.

� Bergmark, D., and M. Pottle. Optimization and Parallelization of a Commodity Trade
Model for the SP1. Cornell Theory Center, Cornell University, June 1994.

� Foster, I. Designing and Building Parallel Programs, Addison-Wesley, 1995.

� Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI, The MIT Press, 1994.

As an alternative, you can use SR28-5757 to order this book through your IBM
representative or IBM branch office serving your locality.

� Koelbel, Charles H., David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and
Mary E. Zosel. The High Performance FORTRAN Handbook, The MIT Press, 1993.

� Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Version
1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995.

� Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface,
Version 2.0, University of Tennessee, Knoxville, Tennessee, July 18, 1997.

 Bibliography 225

� Pfister, Gregory, F. In Search of Clusters, Prentice Hall, 1998.

� Snir, M., Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra.
MPI: The Complete Reference The MIT Press, 1996.

� Spiegel, Murray R. Vector Analysis McGraw-Hill, 1959.

Permission to copy without fee all or part of Message Passing Interface Forum material is
granted, provided the University of Tennessee copyright notice and the title of the document
appear, and notice is given that copying is by permission of the University of Tennessee.
1993, 1997 University of Tennessee, Knoxville, Tennessee.

For more information about the Message Passing Interface Forum and the MPI standards
documents, see:

http://www.mpi-forum.org

226 IBM PE for AIX V3R1.0: DPCL Programming Guide

 Index

A
abstract syntax tree 15

figure illustrating 16
figure illustrating the building of 40, 41
representing conditional statement 44
representing function call 43
representing instruction sequence 44
representing operation 43

acknowledgement callbacks 12, 74
activate function (of the Process and Application

classes) 149
actual function parameter values, representing as a

probe expression 122
add_phase function (of the Process and Application

classes) 157
add_process function (of Application class) 89, 100
address function (of ProbeExp class) 124
address function (of the ProbeExp class) 130
Ais_add_fd function 179
Ais_add_signal function 177
Ais_blog_off function 184
Ais_blog_on function 183
Ais_end_main_loop function 169
Ais_log_off function 184
Ais_log_on function 183
Ais_main_loop function 169
Ais_override_default_callback function 181
Ais_remove_fd function 179
Ais_remove_signal function 178
Ais_send function 130, 137
AisInitialize function 80
AisStatus 58
AisStatus class

data_count function 73
data_value function 73
functions summarized 59
status function 73

AIX process
attaching to (attach and battach functions) 106
creating (Process::create or Process::bcreate

function 95
creating (Process::create or Process::bcreate) 99
detaching from (detach and bdetach functions) 110
resuming execution of (resume and bresume

functions) 107
starting execution of an (Process::start or

Process::bstart function) 96
starting execution of multiple AIX processes

(Application::start or Application::bstart
function 100

starting execution of multiple AIX processes
(Application::start or Application::bstart
function) 103

AIX process (continued)
suspending execution of (suspend and bsuspend

functions) 108
terminating execution of (destroy and bdestroy

functions) 109
alloc_mem function (of Process and Application

classes 121
alloc_mem function (of the Process and Application

classes) 158
allocating memory for probes 120, 158
analysis tool 9

compiling 173
initializing 79
linking 173

Application class 32
activate function 149
add_phase function 157
add_process function 89, 100
alloc_mem function 121, 158
attach function 106
bactivate function 149
badd_phase function 157
balloc_mem function 121, 158
battach function 106
bconnect function 89, 92
bdestroy function 110
bdetach function 110
bdisconnect function 171
bexecute_probe function 163
bfree_mem function 122
binstall_probe function 148
bload_module function 139
bresume function 107
bset_phase_exit function 159
bstart function 101, 104
bsuspend function 108
connect function 89, 92
constructors 89, 100
destroy function 110
detach function 110
disconnect function 171
execute_probe function 163
free_mem function 122
functions summarized 36
get_count function 77
get_process function 144
install_probe function 148
instantiating an object of the 88, 100
load_module function 139
resume function 107
set_phase_exit function 159
start function 101, 104

 Copyright IBM Corp. 2000 227

Application class (continued)
status function 77
suspend function 108

Application object, adding Process objects to
(Application::add_process) 89, 100

arithmetic operations, representing as probe
expression 124

assign function (of ProbeExp class) 124
assignment operations, representing as probe

expressions 125
asynchronous functions 10

figure illustrating 12
attach function (of Process and Application

classes) 106

B
bactivate function (of the Process and Application

classes) 149
badd_phase function (of the Process and Application

classes) 157
balloc_mem function (of Process and Application

classes 121
balloc_mem function (of the Process and Application

classes) 158
battach function (of Process and Application

classes) 106
bconnect function (of Application class) 89
bconnect function (of Application object) 92
bconnect function (of Process class) 84, 85
bcreate function (of PoeAppl class) 103
bcreate function (of Process class) 95, 99
bdestroy function (of Process and Application

classes) 109
bdetach function (of Process and Application

classes) 110
bdisconnect function (of the Process and Application

classes) 171
bexecute_probe function (of the Process and

Application classes) 163
bexpand function (of SourceObj class) 119
bexpand function (of the SourceObj class) 133, 146
bfree_mem function (of Process and Application

classes) 122
binit_procs function (of Application class) 91
binstall_probe function (of the Process and Application

classes) 148
bitwise operations, representing as probe

expressions 124
bload_module function (of the Process and Application

classes) 139
blocking functions 10

figure illustrating 11
bresume function (of Process and Application

classes) 107

bset_phase_exit function (of the Process and
Application classes) 159

bstart function (of Application class) 101, 104
bstart function (of Process class) 97
bsuspend function (of Process and Application

classes) 108

C
call function (of the ProbeExp class) 130, 131, 132,

133
callback routines 12

acknowledgement callbacks 12, 74
data callbacks 12, 167
system callbacks 181

child function (of SourceObj class) 119
child function (of the SourceObj class) 133, 145, 147
child_count function (of SourceObj class) 119
child_count function (of the SourceObj class) 133,

145, 147
compiling analysis tool 173
compiling target application 173
connect function (of Application object) 89, 92
connect function (of Process class) 84, 85
connect states 27
connecting to a target application 83

connecting to a parallel application (non-POE) 87
connecting to a POE application 90
connecting to a serial application 84

conventions xiii
create function (of PoeAppl class) 103
create function (of Process class) 95, 99
creating an AIX process (Process::create or

Process::bcreate function 95
creating an AIX process (Process::create or

Process::bcreate function) 99

D
daemons

DPCL communication daemons 13
DPCL superdaemons 13

data callbacks 12, 167
data values associated with an AisStatus object

determining the number of (AisStatus::data_count
function) 73

getting (AisStatus::data_count function) 73
data_count function (of AisStatus class) 73
data_value function (of AisStatus class) 73
deallocating memory for probes 122
destroy function (of Process and Application

classes) 109
detach function (of Process and Application

classes) 110
diagnostic logs, generating 183

228 IBM PE for AIX V3R1.0: DPCL Programming Guide

disconnect function (of the Process and Application
classes) 171

disconnecting from a target application 171
DPCL

analysis tool 9
Application Programming Interface (API)

summarized 9, 25
callbacks 12

See also callback routines
classes 9, 25
concepts 1, 3, 25
daemons 13
defined 3
overview 1, 3, 25
standard programming tasks summarized 71
target application 9

See also target application
DPCL classes

accessing man pages for xiv
AisStatus class 58
Application class 32
InstPoint class 52
overview of 25
Phase class 57
PoeAppl class 39
ProbeExp class 40
ProbeHandle class 46
ProbeModule class 47
ProbeType class 55
Process class 26
SourceObj class 48
summarized 9

DPCL concepts 1
DPCL functions

accessing man pages for xiv
Ais_add_fd 179
Ais_add_signal 177
Ais_blog_off 184
Ais_blog_on 183
Ais_end_main_loop 169
Ais_log_off 184
Ais_log_on 183
Ais_main_loop 169
Ais_override_default_callback 181
Ais_remove_fd 179
Ais_remove_signal 178
Ais_send function 130
AisStatus class functions summarized 59
AisStatus::data_count 73
AisStatus::data_value 73
AisStatus::status 73
Application class functions summarized 36
Application::activate 149
Application::add_phase 157
Application::add_process 89, 100
Application::alloc_mem 121, 158

DPCL functions (continued)
Application::attach 106
Application::bactivate 149
Application::badd_phase 157
Application::balloc_mem 121, 158
Application::battach 106
Application::bconnect 89, 92
Application::bdestroy 110
Application::bdetach 110
Application::bdisconnect 171
Application::bexecute_probe 163
Application::bfree_mem 122
Application::binstall_probe 148
Application::bload_module 139
Application::bresume 107
Application::bset_phase_exit 159
Application::bstart 101, 104
Application::bsuspend 108
Application::connect 89, 92
Application::destroy 110
Application::detach 110
Application::disconnect 171
Application::execute_probe 163
Application::free_mem 122
Application::get_count 77
Application::get_process 144
Application::install_probe 148
Application::load_module 139
Application::resume 107
Application::set_phase_exit 159
Application::start 101, 104
Application::status 77
Application::suspend 108
asynchronous (compared to blocking) 10

See also asynchronous functions
blocking (compared to nonblocking) 10

See also blocking functions
error checking of 73
InstPoint class functions summarized 54
InstPoint::get_type 148
nonblocking (compared to blocking) 10

See also nonblocking functions
Phase class functions summarized 58
PoeAppl class functions summarized 39
PoeAppl::bcreate 103
PoeAppl::binit_procs 91
PoeAppl::create 103
PoeAppl::init_procs 91
ProbeExp class functions summarized 45
ProbeExp::address 124, 130
ProbeExp::assign 124
ProbeExp::call 130, 131, 132, 133
ProbeExp::ifelse 128
ProbeExp::sequence 127
ProbeHandle class functions summarized 47
ProbeModule class functions summarized 48

 Index 229

DPCL functions (continued)
ProbeModule::get_count 156
ProbeModule::get_name 156
ProbeModule::get_reference 156
ProbeType class functions summarized 57
ProbeType::function_type 122
ProbeType::get_actual 122
Process class functions summarized 30
Process::activate 149
Process::add_phase 157
Process::alloc_mem 121, 158
Process::attach 106
Process::bactivate 149
Process::badd_phase 157
Process::balloc_mem 121, 158
Process::battach 106
Process::bconnect 84, 85
Process::bcreate 95, 99
Process::bdestroy 110
Process::bdetach 110
Process::bdisconnect 171
Process::bexecute 163
Process::bfree_mem 122
Process::binstall_probe 148
Process::bload_module 139
Process::bresume 107
Process::bset_phase_exit 159
Process::bstart 97
Process::bsuspend 108
Process::connect 84, 85
Process::create 95, 99
Process::destroy 110
Process::detach 110
Process::disconnect 171
Process::execute_probe 163
Process::free_mem 122
Process::get_program_object 119, 133, 145
Process::install_probe 148
Process::load_module 139
Process::resume 107
Process::set_phase_exit 159
Process::start 97
Process::suspend 108
return status represented as an AisStatus object 58
SourceObj class functions summarized 51
SourceObj::bexpand 119, 133, 146
SourceObj::child 119, 133, 145, 147
SourceObj::child_count 119, 133, 145, 147
SourceObj::exclusive_point 148
SourceObj::exclusive_point_count 148
SourceObj::expand 119, 133, 146
SourceObj::get_demangled_name 133, 147
SourceObj::get_mangled_name 147
SourceObj::get_variable_name 119
SourceObj::module_name 119, 133, 145
SourceObj::reference 119, 133

DPCL header files, including 79
DPCL main event loop, entering and exiting 169
DPCL system 6

advantages of 21
figure illustrating DPCL system instrumenting a

parallel target application 8
figure illustrating DPCL system instrumenting a serial

target application 7
initializing (Ais_initialize function) 80
summary of how parts work together 3

dynamic instrumentation 5
advantages of 6

E
error checking

getting the status for a particular Process object
managed by an application object
(Application::status function) 77

error checking, performing 73
for asynchronous Application class calls 74
for asynchronous Process class calls 74
for blocking Application class calls 77
for blocking Process class calls 74
using acknowledgement callbacks 74

exclusive instrumentation point counts 53
exclusive_point function (of the SourceObj class) 148
exclusive_point_count function (of the SourceObj

class) 148
execute_probe function (of the Process and Application

classes) 163
exit functions for phase removal 159
expand function (of SourceObj class) 119
expand function (of the SourceObj class) 133, 146

F
free_mem function (of Process and Application

classes) 122
function call, creating a probe expression to

represent 130
a call to a probe module function 132
a call to a target application function 133
a call to an AIX function 131
a call to the Ais_send function 130

function_type function (of ProbeType class) 122

G
get_actual function (of ProbeType class) 122
get_count function (of Application class) 77
get_count function (of the ProbeModule class) 156
get_demangled_name function (of the SourceObj

class) 133, 147
get_mangled_name function (of the SourceObj

class) 147

230 IBM PE for AIX V3R1.0: DPCL Programming Guide

get_name function (of the ProbeModule class) 156
get_process function (of the Application class) 144
get_program_object function (of Process class) 119
get_program_object function (of the Process

class) 133, 145
get_reference function (of the ProbeModule class) 156
get_type function (of the InstPoint class) 148
get_variable_name function (of SourceObj class) 119

H
header files, including 79

I
ifelse function (of the ProbeExp class) 128
inclusive instrumentation point counts 53
init_procs function (of Application class) 91
install_probe function (of the Process and Application

classes) 148
InstPoint class 52, 144

functions summarized 54
get_type function 148

instrumentation points 18
exclusive and inclusive point counts 53
getting reference to 148
installing probes at 148
locations and types 54
navigating application source structure to

identify 144
represented as InstPoint class objects 52

L
linking analysis tool 173
linking target application 173
load_module function (of the Process and Application

classes) 139
logging 183
logical operations, representing as probe

expressions 125

M
main event loop, entering and exiting 169
man pages, accessing DPCL xiv
module_name function (of SourceObj class) 119
module_name function (of the SourceObj class) 133,

145

N
nonblocking functions 10

figure illustrating 12

O
one-shot probes 20

executing 163
when should an analysis tool use 20

operations, representing as probe expressions 123
operator functions (of the ProbeExp class)

overloaded arithmetic operators 124
overloaded assignment operators 125
overloaded bitwise operators 124
overloaded logical operators 125
overloaded pointer operators 127
overloaded relational operators 125

overloaded operators (of the ProbeExp class)
overloaded arithmetic operators 124
overloaded assignment operators 125
overloaded bitwise operators 124
overloaded logical operators 125
overloaded pointer operators 127
overloaded relational operators 125

overview of DPCL 1

P
phase 153

adding to target application process(es) 157
allocating data for a 158
exit functions 159

Phase class 57
functions summarized 58
instantiating an object of the 157

phase probes 19
executing 153
when should an analysis tool use 20

phases 19
See also phase probes
represented as Phase class objects 57

POE application
represented as PoeAppl class object 39

POE application, creating (PoeAppl::create or
PoeAppl::bcreate) 102

POE application, initializing a PoeAppl object to
represent (PoeAppl::init_procs or
PoeAppl::binit_procs) 91

PoeAppl class 39
bcreate 103
binit_procs function 91
create 103
functions summarized 39
init_procs function 91
instantiating an object of the 91, 101

PoeAppl object, creating the processes in
(PoeAppl::create or PoeAppl::bcreate) 102

PoeAppl object, initializing to represent POE target
application (PoeAppl::init_procs or
PoeAppl::binit_procs 91

 Index 231

point probes 17
activating 143, 149
handles identifying installed 46

See also ProbeHandle class
installing 143, 148
when should an analysis tool use 18

pointer operations, representing as probe
expressions 127

probe expression 15
building 117
creating 115
determining basic logic for 116
executing as a one-shot probe 163
executing as a phase probe 153
executing within target application processes 143
installing as a point probe 143
representing a bitwise operation 124
representing a call to a probe module function 132
representing a call to a target application

function 133
representing a call to an AIX function 131
representing a call to the Ais_send function as 130
representing a function calls as 130
representing a logical operation 125
representing a pointer operation 127
representing a reference to a probe module

function 156
representing a relational operation 125
representing a sequence of instructions as 127
representing an actual parameter value as a 122
representing an arithmetic operation as a 124
representing an assignment operation 125
representing an operation as a 123
representing conditional logic as a 128
representing persistent data as a 120
representing temporary data as a 118

probe expressions
represented as a ProbeExp class object 40

probe handles 46
See also ProbeHandle class

probe module 17
compiling 137
creating 136, 154
loading into process(es) 138
represented as a ProbeModule class object 47

probe types 55
ProbeExp class 40

address function 124, 130
assign function 124
call function 130, 131, 132, 133
functions summarized 45
ifelse function 128
overloaded arithmetic operators 124
overloaded assignment operators 125
overloaded bitwise operators 124
overloaded logical operators 125

ProbeExp class (continued)
overloaded pointer operators 127
overloaded relational operators 125
sequence function 127

ProbeHandle class 46
functions summarized 47

ProbeModule class 47
constructors 138
functions summarized 48
get_count function 156
get_name function 156
get_reference function 156
instantiating an object of the 138

probes 15
creating 115
executing within target application processes 143
one-shot probes 20, 163

See also one-shot probes
phase probes 19, 153

See also phase probes
point probes 17, 143

See also point probes
three types of probes 17

ProbeType class 55
function_type function 122
functions summarized 57
get_actual function 122

Process
get_program_object function 145

Process class 26
activate function 149
add_phase function 157
alloc_mem function 121, 158
attach function 106
bactivate function 149
badd_phase function 157
balloc_mem function 121, 158
battach function 106
bconnect function 84, 85
bcreate function 95, 99
bdestroy function 110
bdetach function 110
bdisconnect function 171
bexecute_probe function 163
bfree_mem function 122
binstall_probe function 148
bload_module function 139
bresume function 107
bset_phase_exit function 159
bstart function 97
bsuspend function 108
connect function 84, 85
connect states 27
constructors 85, 88
create function 95, 99
destroy function 110

232 IBM PE for AIX V3R1.0: DPCL Programming Guide

Process class (continued)
detach function 110
disconnect function 171
execute_probe function 163
free_mem function 122
functions summarized 30
get_program_object function 119, 133
install_probe function 148
instantiating an object of the 84, 87, 95, 98
load_module function 139
resume function 107
set_phase_exit function 159
start function 97
suspend function 108

process connect states 27
Process object managed by an Application object,

determining number of (Application::get_count
function) 77

Process objects, adding to an Application object
(Application::add_process function) 89, 100

R
reference function (of SourceObj class) 119
reference function (of the SourceObj class) 133
relational operations, representing as probe

expressions 125
resume function (of Process and Application

classes) 107

S
sample applications, accessing xv
sample programs

hello world program 61
test coverage tool 189

sending data back to the analysis tool (Ais_send
function) 130

sequence function (of the ProbeExp class) 127
set_phase_exit function (of the Process and Application

classes) 159
signals, handling through the DPCL system 177
source objects 17

navigating a hierarchy of 50
represented as SourceObj class objects 48

SourceObj class 48
bexpand function 119, 133, 146
child function 119, 133, 145, 147
child_count function 119, 133, 145, 147
exclusive_point function 148
exclusive_point_count function 148
expand function 119, 133, 146
functions summarized 51
get_demangled_name function 133, 147
get_mangled_name function 147
get_variable_name function 119

SourceObj class (continued)
module_name function 119, 133, 145
reference function 119, 133

start function (of Application class) 101, 104
start function (of Process class) 97
starting a POE application 101
starting a target application 94, 101

starting a parallel application (non-POE) 98
starting a serial application 94

starting execution of an AIX process (Process::start or
Process::bstart function) 96

starting execution of multiple AIX processes
(Application::start or Application::bstart function) 100,
103

states, process connect 27
status

represented as an AisStatus class object 58
status error checking, performing 73

for asynchronous Application class calls 74
for asynchronous Process class calls 74
for blocking Application class calls 77
for blocking Process class calls 74
getting the status for a particular Process object

managed by an application object
(Application::status function) 77

using acknowledgement callbacks 74
status function (of AisStatus class) 73
status function (of Application class) 77
suspend function (of Process and Application

classes) 108
system callbacks 181

T
target application 9

allocating memory for probes in 120
attaching to (attach and battach functions) 106
compiling 173
connecting to 83
controlling execution of 105
deallocating memory for probes in 122
detaching from (detach and bdetach functions) 110
disconnecting from 171
DPCL classes that represent 25
executing probes within 143
figure illustrating instrumentation of a parallel 8
figure illustrating instrumentation of a serial 7
function in, creating a probe expression to represent

a call to a 133
linking 173
loading probe module into 138
resuming execution of (resume and bresume

functions 107
starting 94
suspending execution of (suspend and bsuspend

functions) 108

 Index 233

target application (continued)
terminating execution of (destroy and bdestroy

functions) 109
trademarks 210

234 IBM PE for AIX V3R1.0: DPCL Programming Guide

Communicating Your Comments to IBM

IBM Parallel Environment for AIX
Dynamic Probe Class Library
Programming Guide
Version 3 Release 1

Publication No. SA22-7420-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use one of these network IDs:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

IBM Parallel Environment for AIX
Dynamic Probe Class Library
Programming Guide
Version 3 Release 1

Publication No. SA22-7420-00

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
SA22-7420-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SA22-7420-00

IBM

Program Number: 5765-D93

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7428-88

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How This Book is Organized
	Overview of Contents

	Conventions and terminology used in this book
	Accessing AIX man pages for DPCL classes and functions
	Accessing DPCL sample applications
	How to send your comments
	National language support (NLS)
	What's new in PE 3.1?
	New version of PE
	New application program interfaces (APIs)
	Dynamic probe class library (DPCL) parallel tools development API
	Parallel task identification API

	Support for FORTRAN 95
	Support for Distributed Computing Environment (DCE) security
	MPI enhancements
	Full support for MPI I/O
	Support for MPI one-sided communication
	Support for MPI shared memory message passing

	Support for 4096 tasks
	Removal of VT support
	Commands no longer supported
	Change to softcopy documentation filesets

	DPCL Concepts and Overview
	Chapter 1. What is DPCL?
	What is dynamic instrumentation?
	What are the advantages of dynamic instrumentation?

	What is the DPCL system?
	What is a DPCL target application?
	What is a DPCL analysis tool?
	What is the DPCL API?
	What are DPCL callbacks?

	What are the DPCL daemons?
	What is a probe?
	What is a probe expression?
	What is a probe module?
	What are the three types of probes?

	Why is it advantageous to build analysis tools on the DPCL system?

	Chapter 2. What are the DPCL classes?
	What are the Process, Application, and PoeAppl classes?
	What is the Process class?
	What is the Application class?
	What is the PoeAppl class?

	What are the ProbeExp, ProbeHandle, and ProbeModule classes?
	What is the ProbeExp class?
	What is the ProbeHandle class?
	What is the ProbeModule class?

	What are the SourceObj and InstPoint classes?
	What is the SourceObj class?
	What is the InstPoint class?

	What is the ProbeType class?
	What is the Phase class?
	What is the AisStatus class?

	Chapter 3. A DPCL hello world program
	The hello world target application
	The hello world analysis tool
	Step 1: Initialize tool to use the DPCL system
	Step 2: Connect to the target application
	Step 3: Create hello world probe
	Step 4: Install and execute probe in the target application
	Step 5: Entering the DPCL main event loop

	Compiling, linking, and running the DPCL hello world program

	Standard DPCL Programming Tasks
	Chapter 4. Performing status error checking
	Chapter 5. Initializing the analysis tool to use the DPCL system
	Step 1: Include DPCL header file(s)
	Step 2: Initialize the DPCL system
	Example: Initializing the analysis tool to use the DPCL system

	Chapter 6. Connecting to or starting the target application processes
	Connecting to the target application
	Connecting to a serial application
	Step 1: Instantiate a Process object that identifies the target application process
	Step 2: Connect to the target application process
	Example: Connecting to a serial application

	Connecting to a parallel application
	Connecting to a non-POE parallel application
	Connecting to a POE application

	Starting the target application
	Starting a serial application
	Step 1: Instantiate a Process object
	Step 2: Create target application Process
	Step 3: Start the target application process

	Starting a parallel application
	Starting a non-POE parallel application
	Starting a POE application

	Chapter 7. Controlling execution of target application processes
	Attaching to the target application process(es)
	Resuming execution of the target application process(es)
	Suspending execution of the target application process(es)
	Terminating target application processes
	Detaching from target application processes
	Example: Controlling execution of target application processes

	Chapter 8. Creating probes
	Creating probe expressions
	Step 1: Determine basic logic for the probe expression
	Step 2: Build the probe expression
	Step 2a: Create probe expressions to represent temporary or persistent data
	Step 2b: Create probe expressions to represent operations
	Step 2c: Create probe expressions to represent a sequence of instructions
	Step 2d: Create probe expressions to represent conditional logic
	Step 2e: Create probe expressions to represent function calls

	Example: Creating probe expressions

	Creating and calling probe module functions
	Step 1: Create probe module function
	Step 2: Compile the probe module
	Step 3: Instantiate a ProbeModule class object to represent the probe module
	Step 4: Load probe module into Process class object(s)
	Step 5: Create probe expression to reference or call the probe module function
	Step 6: Create data callback function to respond to messages from the probe
	Example: Creating and calling a probe module function

	Chapter 9. Executing probes in target application processes
	Installing and activating point probes
	Step 1: Create point probe
	Step 2: Navigate application source structure to get instrumentation point
	Step 2a: Get target process object
	Step 2b: Get program object
	Step 2c: Identify target module where point probe will be installed
	Step 2d: Expand target module
	Step 2e: Identify target function
	Step 2f: Get reference to instrumentation point within target application

	Step 3: Install probe at instrumentation point
	Step 4: Activate probe
	Example: Installing and activating a point probe

	Executing phase probes
	Step 1: Create probe module(s)
	Step 2: Create probe expression(s) to reference the probe module function(s)
	Step 3: Create phase
	Step 4: Add phase to the target application process(es)
	Step 5: Create probe expression(s) to allocate and associate data with the phase
	Step 6: Specify phase exit functions
	Step 7: Modify phase period
	Example: Executing phase probes

	Executing one-shot probes
	Step 1: Create one-shot probe
	Step 2: Execute the one-shot probe
	Example: Executing a one-shot probe

	Chapter 10. Creating data callback routines
	Chapter 11. Entering and exiting the DPCL main event loop
	Example: Entering and exiting the DPCL main event loop

	Chapter 12. Disconnecting from target application processes
	Chapter 13. Compiling and linking the analysis tool and target application
	Step 1: Prelink target application with DPCL library
	Step 2: Compile the analysis tool with DPCL library and include files

	Additional DPCL Programming Tasks
	Chapter 14. Handling signals and file descriptors through the DPCL system
	Handling signals through the DPCL system
	Handling file descriptors through the DPCL system

	Chapter 15. Overriding default system callbacks
	Chapter 16. Generating diagnostic logs

	Appendixes
	Appendix A. A DPCL test coverage tool
	Notices
	Trademarks

	Glossary
	Bibliography
	Information Formats
	Finding Documentation on the World Wide Web
	Accessing PE Documentation Online
	RS/6000 SP Publications
	SP Hardware and Planning Publications
	SP Software Publications
	LoadLeveler Publications
	Parallel Environment (PE) Publications
	PSSP Publications

	AIX and Related Product Publications
	DCE Publications
	Red Books
	Non-IBM Publications

	Index

